精英家教网 > 高中数学 > 题目详情
10.已知命题p:任意x∈R,sinx≤1,则(  )
A.¬p:存在x∈R,sinx≥1B.¬p:任意x∈R,sinx≥1
C.¬p:存在x∈R,sinx>1D.¬p:任意x∈R,sinx>1

分析 根据全称命题的否定是特称命题进行判断即可.

解答 解:命题是全称命题,则命题的否定是特称命题,
即存在x∈R,sinx>1,
故选:C

点评 本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知f(x)=|x-a|+|x-3|.
(1)当a=1时,求f(x)的最小值;
(2)若不等式f(x)≤3的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在△ABC中,AD⊥AB,$\overrightarrow{BC}$=2$\sqrt{3}$$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=1,则$\overrightarrow{AC}$•$\overrightarrow{AD}$=(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“|x|+|y|≠0”是命题“x≠0或y≠0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系内,点A(0,1),B(0,-1),C(1,0),点P满足$\overrightarrow{AP}•\overrightarrow{BP}=k|\overrightarrow{PC}{|^2}$.
(1)若k=2,求点P的轨迹方程;
(2)当k=0时,若$|λ\overrightarrow{AP}+\overrightarrow{BP}{|_{max}}=4$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$左焦点F1作弦AB,则△ABF2(F2为右焦点)的周长是16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$y=\frac{lnx}{x}$的导数为(  )
A.$y=\frac{1-lnx}{x^2}$B.$y=\frac{1+lnx}{x^2}$C.$y=\frac{lnx-1}{x^2}$D.$y=\frac{x+lnx}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四边形ABCD为矩形,PB=20,BC=30,PA⊥平面ABCD.
(1)证明:平面PCD⊥平面PAD;
(2)当AB的长为多少时,面PAB与面PCD所成的二面角为60°?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,已知某几何体的主视图和左视图是全等的等腰直角三角形,俯视图是边长为2的正方形,那么它的体积是(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

同步练习册答案