精英家教网 > 高中数学 > 题目详情
10.数列{an}是公差不为零的等差数列,Sn是其前n项和,已知a2+a3+a5=20,且a2、a4、a8成等比数列,记M=$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.
(1)求M;
(2)数列{bn}的前n项和为Tn,已知Tn=2(bn-1),试比较Tn与M+1的大小.

分析 (1)设数列{an}是公差d不为零的等差数列,由等差数列的通项公式和等比数列中项的性质,可得首项与公差的方程,解方程可得首项和公差,进而得到Sn,由$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,运用裂项相消求和,即可得到M;
(2)求出b1,再由当n≥2时,bn=Tn-Tn-1,化简可得数列{bn}为首项和公比均为2的数列,由等比数列前n项和公式,可得Tn,运用数列的单调性和不等式的性质,即可得到结论.

解答 解:(1)设数列{an}是公差d不为零的等差数列,
a2+a3+a5=20,可得3a1+7d=20,①
a2、a4、a8成等比数列,可得a42=a2a8
(a1+3d)2=(a1+d)(a1+7d),②
由①②解得a1=d=2,
Sn=na1+$\frac{1}{2}$n(n-1)d=2n+n(n-1)=n2+n,
$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
M=$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$;
(2)Tn=2(bn-1),
当n=1时,b1=T1=2(b1-1),
解得b1=2,
当n≥2时,bn=Tn-Tn-1=2(bn-1)-2(bn-1-1),
可得bn=2bn-1
则数列{bn}为首项和公比均为2的数列,
即有Tn=$\frac{2(1-{2}^{n})}{1-2}$=2(2n-1),
由于Tn递增,n=1时,取得最小值2,
即Tn≥2,
又M+1=2-$\frac{1}{n+1}$<2,
故Tn>M+1.

点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在△ABC中,cosA=$\frac{3}{5}$,且sinB=$\frac{12}{13}$,则cosC=(  )
A.-$\frac{33}{65}$B.$\frac{33}{65}$C.$\frac{63}{65}$D.$\frac{63}{65}$或$\frac{33}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{xln\frac{1}{|x|}}{|x|}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.平面直角坐标系xOy中,圆C方程为x2+y2+2x-2y-2=0,过点A(0,3)的直线l被圆截得的弦EF长为2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=$\frac{1}{3}$EF,则$\overrightarrow{AF}$•$\overrightarrow{BC}$的值为(  )
A.$\frac{3}{4}$B.$\frac{1}{8}$C.-$\frac{5}{8}$D.$\frac{11}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与圆(x+1)2+(y-$\sqrt{3}$)2=1相切,则此双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.三个数a=0.65,b=50.6,c=log0.65,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足$\left\{\begin{array}{l}x-2y+1≥0\\ x≤2\\ x+y-1≥0\end{array}\right.,z=|{x+2y-4}|$,则z的最大值与最小值之差为(  )
A.5B.1C.4D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C的方程为x2+y2-2x+4y-m=0.
(I)若点P(m,-2)在圆C的外部,求m的取值范围;
(II)当m=4时,是否存在斜率为1的直线l,使以l被圆C截得的弦AB为直径所作的圆过原点?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案