精英家教网 > 高中数学 > 题目详情
2.已知集合A={x|x2-4x+3=0},B={x|mx+1=0,m∈R},A∩B=B,求实数m的取值的集合.

分析 求出A中方程的解确定出A,根据A与B的交集为B,得到B为空集或B为A的子集,求出m的值即可.

解答 解:∵A={1,3},且A∩B=B,
∴B⊆A,
当m=0时,B=∅,满足B⊆A;
当m≠0时,B≠∅,此时x=-$\frac{1}{m}$,
由B⊆A,得到-$\frac{1}{m}$=1或3,
解得:m=-1或-$\frac{1}{3}$,
则实数m取值的集合为{-1,-$\frac{1}{3}$,0}.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.根据如图,当输入x为2006时,输出的y=10.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径是(  )
A.5$\sqrt{2}$cmB.4$\sqrt{3}$cmC.3$\sqrt{5}$cmD.2$\sqrt{6}$cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l1:x-2y+4=0与l2:x+y-2=0相交于点P
(1)求交点P的坐标;
(2)设直线l3:3x-4y+5=0,分别求过点P且与直线l3平行和垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log2(1-x),g(x)=log2(1+x),令h(x)=f(x)-g(x)
(1)求函数h(x)定义域,判断h(x)的奇偶性并写出证明过程.
(2)判断函数h(x)在定义域内的单调性,写出必要的推理过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-1|+|x+1|,M为不等式f(x)≤4的解集.
(1)求集合M.
(2)当a,b∈M时,求证$2|{a-b}|≤\sqrt{16-7{a^2}{b^2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{1-{2^x}}}{{{2^x}+1}}$.
(1)分别求出f(1),f(a)的值.
(2)判断函数f(x)的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若不等式$\left\{\begin{array}{l}{x-y+5≥0}\\{0≤x≤3}\\{y≥a}\end{array}\right.$表示的平面区域是一个三角形,则a的取值范围是(  )
A.(3,5)B.(5,7)C.[5,8]D.[5,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知tan60°=m,则cos120゜的值是(  )
A.$\frac{1}{{\sqrt{1+{m^2}}}}$B.$\frac{1-{m}^{2}}{1+{m}^{2}}$C.$\frac{m}{{\sqrt{1+{m^2}}}}$D.-$\frac{m}{{\sqrt{1+{m^2}}}}$

查看答案和解析>>

同步练习册答案