【题目】已知二次函数,有两个零点为和.
(1)求、的值;
(2)证明:;
(3)用单调性定义证明函数在区间上是增函数;
(4)求在区间上的最小值.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形是边长为2的正方形,,为的中点,点在上,平面,在的延长线上,且.
(1)证明:平面.
(2)过点作的平行线,与直线相交于点,点为的中点,求到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,.
(Ⅰ)求证:平面面;
(Ⅱ)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求证:是上的奇函数;
(2)求的值;
(3)求证:在上单调递增,在上单调递减;
(4)求在上的最大值和最小值;
(5)直接写出一个正整数,满足.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,点的极坐标为, 直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点, 为线段的中点.求点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】幻彩摩天轮位于中山市西区兴中广场C段4层高的建筑之上,与中山市第一家四星级酒店——富华酒店隔河相望,其外观是参考世界最高的摩天轮新加坡“飞行者”的设计,轮体上有36个吊舱,共可同时承载288人从高空俯瞰岐江一河两岸的美景.幻彩摩天轮直径为83m,每20min转一圈,最高点离地108m,摩天轮上的点P的起始位置在最低点处.已知在时刻t(min)时P距离地面的高度,(其中),
(1)求的函数解析式.
(2)当离地面m以上时,可以俯瞰富华酒店顶楼,求转一圈中有多少时间可以俯瞰富华酒店顶楼?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知△中,∠=90°,,且=1,=2,△绕旋转至,使点与点之间的距离=.
(1)求证:⊥平面;
(2)求二面角的大小;
(3)求异面直线与所成的角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com