精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数,有两个零点为

1)求的值;

2)证明:

3)用单调性定义证明函数在区间上是增函数;

4)求在区间上的最小值

【答案】1;(2)证明见解析;(3)证明见解析;(4.

【解析】

1)利用韦达定理可得出关于实数的方程组,即可求出这两个未知数的值;

2)直接计算f1x,可证明出

3)任取,作差,因式分解后判断差值的符号,即可证明出函数在区间上是增函数;

4)分两种情况讨论,分析函数在区间上的单调性,即可得出函数在区间上的最小值的表达式.

1)由韦达定理得,解得

2)由(1)知

因此,

3)任取,则

,即

因此,函数在区间上是增函数;

4)当时,函数在区间上为减函数,此时

时,函数在区间上减函数,在区间上为增函数,

此时.

综上所述,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是边长为2的正方形,的中点,点上,平面的延长线上,且.

(1)证明:平面.

(2)过点的平行线,与直线相交于点,点的中点,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的最小正周期;

(2)常数,若函数在区间上是增函数,求的取值范围;

(3)若函数的最大值为2,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面.

(Ⅰ)求证:平面

(Ⅱ)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:上的奇函数;

2)求的值;

3)求证:上单调递增,在上单调递减;

4)求上的最大值和最小值;

5)直接写出一个正整数,满足

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,点的极坐标为, 直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点, 为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】幻彩摩天轮位于中山市西区兴中广场C4层高的建筑之上,与中山市第一家四星级酒店——富华酒店隔河相望,其外观是参考世界最高的摩天轮新加坡飞行者的设计,轮体上有36个吊舱,共可同时承载288人从高空俯瞰岐江一河两岸的美景幻彩摩天轮直径为83m,每20min转一圈,最高点离地108m,摩天轮上的点P的起始位置在最低点处已知在时刻tmin)时P距离地面的高度,(其中),

1)求的函数解析式

2)当离地面m以上时,可以俯瞰富华酒店顶楼,求转一圈中有多少时间可以俯瞰富华酒店顶楼?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中,=90°,且=1=2旋转至,使点与点之间的距离=

1)求证:平面

2)求二面角的大小;

3)求异面直线所成的角的余弦值.

查看答案和解析>>

同步练习册答案