精英家教网 > 高中数学 > 题目详情

【题目】12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2)

1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X1)X的数学期望;

2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

)试说明上述监控生产过程方法的合理性;

)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,其中xi为抽取的第i个零件的尺寸,i=1,2,,16

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μσ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997 40.997 4160.959 2

【答案】1的数学期望为

(2)详见解析

【解析】(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026,故.因此

.

的数学期望为.

(2)(i)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.

(ii)由,得的估计值为的估计值为,由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生产过程进行检查.

剔除之外的数据9.22,剩下数据的平均数为,因此的估计值为10.02.

,剔除之外的数据9.22,剩下数据的样本方差为

因此的估计值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知θ为向量 的夹角,| |=2,| |=1,关于x的一元二次方程x2﹣| |x+ =0有实根.
(Ⅰ)求θ的取值范围;
(Ⅱ)在(Ⅰ)的条件下,求函数f(θ)=sin(2θ+ )的最值及对应的θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面 上的动点, .

(Ⅰ)若点中点,证明:平面平面

(Ⅱ)判断点到平面的距离是否为定值?若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某鲜花店根据以往某品种鲜花的销售记录,绘制出日销售量的频率分布直方图,如图所示.将日销售量落入各组区间的频率视为概率,且假设每天的销售量相互独立.

(1)求在未来的连续4天中,有2天的日销售量低于100枝且另外2天不低于150枝的概率;

(2)用表示在未来4天里日销售量不低于100枝的天数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 和抛物线 为坐标原点.

(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;

(2)过抛物线上一点作两直线和圆相切,且分别交抛物线两点,若直线的斜率为,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为(
A.3
B.2
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一直线l过直线l1:3x﹣y=3和直线l2:x﹣2y=2的交点P,且与直线l3:x﹣y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆心在x正半轴上的半径为 的圆C相切,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax﹣(k﹣1)ax(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)= ,且g(x)=a2x+a2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.

查看答案和解析>>

同步练习册答案