【题目】如图,边长为4的正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.
(1)求证:PA//平面MBD.
(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.
【答案】(1)证明见解析;(2)存在点N,当N为AB中点时,平面PQB⊥平面PNC,证明见解析.
【解析】
(1) 连接AC交BD于点O,证明MO//PA,可得PA//平面MBD;
(2)先利用正方形ABCD所在平面与正△PAD所在平面互相垂直可得PQ⊥平面ABCD,
结合PQ⊥NC,可得NC⊥平面PQB.
解:(1)证明:连接AC交BD于点O,连接MO,.
由正方形ABCD知O为AC的中点,
∵M为PC的中点,
∴MO//PA.
∵平面MBD,平面MBD,
∴PA//平面MBD.
(2)存在点N,当N为AB中点时,平面PQB⊥平面PNC,证明如下:
∵四边形ABCD是正方形,Q为AD的中点,
∴BQ⊥NC.
∵Q为AD的中点,△PAD为正三角形,
∴PQ⊥AD.
又∵平面PAD⊥平面ABCD,且面PAD∩面ABCD=AD,平面PAD
∴PQ⊥平面ABCD.
又∵平面ABCD,
∴.PQ⊥NC.
又,
∴NC⊥平面PQB.
∵平面PCN,
∴平面PCN⊥平面PQB.
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥的底面是边长为1的正方形,侧棱底面,且,是侧棱上的动点.
(1)求四棱锥的体积;
(2)如果是的中点,求证:平面;
(3)不论点在侧棱的任何位置,是否都有?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(I) 求x,y ;
(II) 若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为(为参数).以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)设动直线:分别与曲线,相交于点,,求当为何值时,取最大值,并求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论
①AC⊥BD;
②△ACD是等边三角形;
③AB与平面BCD成60°的角;
④AB与CD所成的角是60°.
其中正确结论的序号是________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系xOy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程是,曲线C2的参数方程是(θ为参数).
(1)写出曲线C1,C2的普通方程;
(2)设曲线C1与y轴相交于A,B两点,点P为曲线C2上任一点,求|PA|2+|PB|2的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com