把f(x)和g(x)代入到F(x),然后利用对数的运算性质化简,转化为关于a的不等式,再运用基本不等式即可.
解答:解:∵f(x)=log
a(x+1),g(x)=2log
a(2x+t)(a>1),x∈[0,1),t∈[4,6)时,F(x)=g(x)-f(x)有最小值是4,
∴F(x)=g(x)-f(x)=log
a
,x∈[0,1),t∈[4,6)
∵a>1,
∴令h(x)=

=

=4(x+1)+4(t-2)+

∵0≤x<1,4≤t<6,
∴h(x)=4(x+1)+

+4(t-2)在[0,1)上单调递增,
∴h(x)
min=h(0)=4+(t-2)
2+4(t-2)=[(t-2)+2]
2=t
2,
∴F(x)
min=log
at
2=4,
∴a
4=t
2;
∵4≤t<6,
∴a
4=t
2≥16,
∴a≥2.
故选B.