精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=Asin(ωx+$\frac{π}{3}$)(A>0,ω>0)最大值为2,周期为π.
(1)求实数A,ω的值;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

分析 (1)根据三角函数的图象和性质,可得实数A,ω的值.可得f(x)的解析式.
(2)当x∈[0,$\frac{π}{2}$]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的取值最大和最小值,即得到f(x)的值域.

解答 解:(1)函数f(x)=Asin(ωx+$\frac{π}{3}$)(A>0,ω>0)最大值为2,周期为π.
∵sin(ωx+$\frac{π}{3}$)的最大值为1,
∴A=2.
周期T=π=$\frac{2π}{ω}$,可得ω=2,
∴f(x)=2sin(2x+$\frac{π}{3}$).
(2)由(1)可得f(x)=2sin(2x+$\frac{π}{3}$).
∵x∈[0,$\frac{π}{2}$],
∴2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
当2x+$\frac{π}{3}$=$\frac{π}{2}$时,f(x)取得最大值为2.
当2x+$\frac{π}{3}$=$\frac{4π}{3}$时,f(x)取得最小值为$-\sqrt{3}$
故得当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域为[$-\sqrt{3}$,2].

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,求出解析式是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设定义在R上的偶函数f(x)在区间(-∞,0]上单调递减,若f(1-m)<f(m),则实数m的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c分别为锐角△ABC的三个内角A,B,C的对边,且acosC+$\sqrt{3}$asinC-b-c=0.
(1)求A的大小;
(2)若a=$\sqrt{3}$,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\frac{ln(x-1)}{\sqrt{4-{x}^{2}}}$的定义域为(  )
A.(1,2)B.[1,2]C.(1,4)D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|x-2|+|x+2|,则下列坐标表示的点一定在函数f(x)图象上的是(  )
A.(a,-f(a))B.(a,-f(-a))C.(-a,-f(a))D.(-a,f(a))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2-x+1-x的零点所在区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于x的方程4x-m•2x+1+4=0有实数根,则m的取值范围(  )
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)是定义域为R的任意函数
(Ⅰ)求证:函数g(x)=$\frac{f(x)-f(-x)}{2}$是奇函数,h(x)=$\frac{f(x)+f(-x)}{2}$是偶函数
(Ⅱ)如果f(x)=ln(ex+1),试求(Ⅰ)中的g(x)和h(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设变量x,y满足约束条件$\left\{\begin{array}{l}{2-y≥0}\\{x-3y+2≤0}\\{4x-5y+2≥0}\end{array}\right.$,则目标函数z=x-2y的最大值为0.

查看答案和解析>>

同步练习册答案