精英家教网 > 高中数学 > 题目详情
20.cos210°=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 由诱导公式,特殊角的三角函数值即可化简求值得解.

解答 解:cos210°=cos(180°+30°)=-cos30°=-$\frac{\sqrt{3}}{2}$.
故选:A.

点评 本题主要考查了诱导公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知F是抛物线y2=4x的焦点,A、B是该抛物线上的点,|AF|+|BF|=5,则 线段AB的中点的横坐标为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,抛物线C1:y2=2x和圆C2:(x-$\frac{1}{2}$)2+y2=$\frac{1}{4}$,其中p>0,直线l经过C1的焦点,依次交C1,C2于A,B,C,D四点,则$\overrightarrow{AB}$•$\overrightarrow{CD}$的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=sin(ωx)(ω为正整数)在区间(-$\frac{π}{6}$,$\frac{π}{12}$)上不单调,则ω的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{{3^x},x≤0}\end{array}}\right.$,则$f[{f({\frac{1}{4}})}]$=$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知角α的终边过点P(-8m,-6sin30°),且cosα=-$\frac{4}{5}$,则m的值为$\frac{1}{2}$,sinα=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lg$\frac{x+1}{x-1}$.
(Ⅰ)求函数f(x)的定义域,并证明其在定义域上是奇函数;
(Ⅱ)对于x∈[2,6],f(x)>lg$\frac{m}{(x-1)(7-x)}$恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,双曲线的中心在坐标原点O,M、N分别为双曲线虚轴的上、下端点,A是双曲线的右顶点,F是双曲线的右焦点,直线AM与FN相交于点P,若∠APF是锐角,则此双曲线的离心率的取值范围是(  )
A.($\frac{1+\sqrt{5}}{2}$,+∞)B.(1+$\sqrt{5}$,+∞)C.(0,$\frac{\sqrt{5}-1}{2}$)D.($\frac{1+\sqrt{5}}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.要得到函数y=log2(2x+1)的图象,只需将y=1+log2x的图象(  )
A.向左移动$\frac{1}{2}$个单位B.向右移动$\frac{1}{2}$个单位
C.向左移动1个单位D.向右移动1个单位

查看答案和解析>>

同步练习册答案