精英家教网 > 高中数学 > 题目详情
在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且∠A=80°,a2=b(b+c),求∠C.
考点:余弦定理
专题:解三角形
分析:已知等式变形,利用正弦定理化简,利用二倍角的余弦函数公式及和差化积公式变形,再利用诱导公式化简,得到∠A与∠B的关系,由∠A的度数求出∠B的度数,进而求出∠C的度数即可.
解答: 解:∵a2=b(b+c),
∴a2=b2+bc,
由正弦定理得:a=2RsinA,b=2RsinB,c=2RsinC,
∴sin2A=sin2B+sinBsinC,即
1-cos2A
2
=
1-cos2B
2
+sinBsinC,
整理得:-
cos2A-cos2B
2
=sinBsinC,
化简得:sin(A+B)sin(A-B)=sinBsinC,
∵∠A+∠B+∠C=180°,即∠A+∠B=180°-∠C,
∴sin(A+B)=sinC≠0,
∴sin(A-B)=sinB,
∴∠A-∠B=∠B,即∠A=2∠B,
∵∠A=80°,
∴∠B=40°,
则∠C=180°-80°-40°=60°.
点评:此题考查了余弦定理,正弦定理,二倍角的余弦函数公式,诱导公式的作用,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-4ax-3
(Ⅰ)当a=-1时,求关于x的不等式f(x)>0的解集;
(Ⅱ)若对于任意的x∈R,均有不等式f(x)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求过点(2,0)且与曲线y=x3相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求数列a,2a2,3a3,4a4,…,nan,…(a为常数,且a≠1,a≠0)的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2(x+
π
4
)-
3
cos2x,x∈[
π
4
π
2
],设x=α时,f(x)取到最大值.求f(x)的最大值及α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 f(x)=
x2-4x+3,x≤0
-x2-2x+3,x>0
,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|log
1
2
2x|+|log
1
2
x|取最小值时x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内动点M(x,y)与两定点A(-
6
,0),B(
6
,0)的连线的斜率之积为-
1
3
,记动点M的轨迹为C.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)定点F(-2,0),T为直线x=-3上任意一点,过F作TF的垂线交曲线C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当
|TF|
|PQ|
最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-y2=1,点A是它的左顶点,c是它的半焦距,点B(c2,0),点P是双曲线右支上的点,且满足AP⊥BP,求点P的坐标.

查看答案和解析>>

同步练习册答案