精英家教网 > 高中数学 > 题目详情

【题目】对于函数f(x)= ,存在一个正数b,使得f(x)的定义域和值域相同,则非零实数a的值为(
A.2
B.﹣2
C.﹣4
D.4

【答案】C
【解析】解:由题意:函数f(x)= ,若a>0,由于ax2+bx≥0,即x(ax+b)≥0,
∴对于正数b,f(x)的定义域为:D=(﹣∞,﹣ ]∪[0,+∞),
但f(x)的值域A[0,+∞),故D≠A,不合要求.
若a<0,对于正数b,f(x)的定义域为 D=[0,﹣ ].
由于此时函数 f(x)max=f(﹣ )= = =
故函数的值域 A=[0, ],
由题意,有: =
由于b>0,
解得:a=﹣4.
故选C.
由题意:函数f(x)= ,对a讨论,求其定义域和值域相同,讨论a的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C的中心为原点O,F(﹣2 ,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=4,则椭圆C的方程为(

A. =1
B. =1
C. =1
D. =1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,根据图象:

(1)写出函数f(x),x∈R的增区间并将图象补充完整;
(2)写出函数f(x),x∈R的解析式;
(3)若函数g(x)=f(x)﹣4ax+2,x∈[1,3],求函数g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.(本小题满分14分)已知等比数列的公比为,首项为,其前项的和为.数列的前项的和为, 数列的前项的和为

,求的通项公式;为奇数时,比较的大小; 为偶数时,若,问是否存在常数(与n无关),使得等式恒成立,若存在,求出的值;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲乙两船,其中甲船在某岛B的正南方A处,A与B相距7公里,甲船自A处以4公里/小时的速度向北方向航行,同时乙船以6公里/小时的速度自B岛出发,向北60°西方向航行,问分钟后两船相距最近.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设l为曲线C:y= 在点(1,0)处的切线.
(Ⅰ)求l的方程;
(Ⅱ)证明:除切点(1,0)之外,曲线C在直线l的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=bax(a>0,且a≠1,b∈R)的图象经过点A(1,6),B(3,24).
(1)设g(x)= ,确定函数g(x)的奇偶性;
(2)若对任意x∈(﹣∞,1],不等式( x≥2m+1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知函数,且曲线在点处的切线与直线平行.

(1)求的值;

(2)判断函数的单调性;

(3)求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图 ,在四棱锥中, , 为棱的中点, .

(1)证明: 平面

(2)若二面角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案