精英家教网 > 高中数学 > 题目详情

【题目】如下图所示,某窑洞窗口形状上部是圆弧,下部是一个矩形,圆弧所在圆的圆心为O,经测量米,米,,现根据需要把此窑洞窗口形状改造为矩形,其中EF在边上,GH在圆弧.,矩形的面积为S.

1)求矩形的面积S关于变量的函数关系式;

2)求为何值时,矩形的面积S最大?

【答案】(1)(2)

【解析】

1)结合几何图形计算的直角三角形勾股定理,找出矩形的面积S关于变量θ的函数关系式;

2)对S关于变量θ的函数关系式进行求导分析,算出时的的值,三角计算即可得出结果.

解:(1)如图,作分别交MN

由四边形是矩形,O为圆心,

所以PMN分别为中点,

中,

所以

所以

中,

所以

所以

所以

所以S关于的函数关系式为:

2)由(1)得:

因为

所以

,得

,且

所以,得,即S单调递增,

,得,即S单调递减

所以当时,S取得最大值,

所以当时,矩形的面积S最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,

(1)讨论函数的单调性,并写出相应的单调区间;

(2)已知,若对任意都成立,求的最大值;

(3)设,若存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数y与月份之间的回归直线方程+

(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;

(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?

参考公式及数据:,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游戏棋盘上标有第站,棋子开始位于第站,选手抛掷均匀骰子进行游戏,若掷出骰子向上的点数不大于,棋子向前跳出一站;否则,棋子向前跳出两站,直到跳到第站或第站时,游戏结束.设游戏过程中棋子出现在第站的概率为.

1)当游戏开始时,若抛掷均匀骰子次后,求棋子所走站数之和的分布列与数学期望;

2)证明:

3)若最终棋子落在第站,则记选手落败,若最终棋子落在第站,则记选手获胜.请分析这个游戏是否公平.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=lnx+ax2+(2a+1)x

(1)讨论的单调性;

(2)当a﹤0时,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆E :的焦距为4,两条准线间的距离为8AB分别为椭圆E的左、右顶点.

(1)求椭圆E 的标准方程;

(2)已知图中四边形ABCD 是矩形,且BC4,点MN分别在边BCCD上,AMBN相交于第一象限内的点P .①若MN分别是BCCD的中点,证明:P在椭圆E上;②若点P在椭圆E上,证明:为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家刘徽在其《海岛算经》中给出了著名的望海岛问题及二次测望方法:今有望海岛,立两表,齐高三丈,前后相去千步,令后表与前表三相直.从前表却行一百二十三步,人目着地取望岛峰,与表末三合.从后表却行一百二十七步,人目着地取望岛峰,亦与表末三合.问岛高及去表各几何?这一方法领先印度500多年,领先欧洲1300多年.其大意为:测量望海岛PQ的高度及海岛离岸距离,在海岸边立两根等高的标杆共面,均垂直于地面),使目测点EPB共线,目测点FPD共线,测出AECFAC即可求出岛高和距离(如图).,则______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,若存在一次函数,使得对于任意的,都有恒成立,则称函数上的弱渐进函数.下列结论正确的是______.(写出所有正确命题的序号)

上的弱渐进函数;

上的弱渐进函数;

上的弱渐进函数;

上的弱渐进函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为,椭圆的离心率是的面积是.

1)求椭圆的标准方程.

2)直线与椭圆交于两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案