【题目】某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:):男生成绩在175以上(包括175)定义为“合格”,成绩在175以下(不包括175)定义为“不合格”.女生成绩在165以上(包括165)定义为“合格”,成绩在165以下(不包括165)定义为“不合格”.
(1)求五年一班的女生立定跳远成绩的中位数;
(2)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;
(3)若从五年一班成绩“合格”的学生中选取2人参加复试,用表示其中男生的人数,写出的分布列,并求的数学期望.
【答案】(1)166.5cm (2) (3)见解析
【解析】
(1)按照中位数的定义,可以根据茎叶图得到五年一班的女生立定跳远成绩的中位数;
(2) 男生中任意选取3人,至少有2人的成绩是合格,包括两个事件:一个为事件 :“仅有两人的成绩合格”,另一个为事件 :“有三人的成绩合格”,所以至少有两人的成绩是合格的概率:,分别求出,最后求出;
(3) 因为合格的人共有18人,其中有女生有10人合格,男生有8人合格,依题意,的取值为0,1,2,分别求出的值,最后列出的分布列和计算出的数学期望.
解:(1)由茎叶图得五年一班的女生立定跳远成绩的中位数为
(2)设“仅有两人的成绩合格”为事件,“有三人的成绩合格”为事件,
至少有两人的成绩是合格的概率:,
又男生共12人,其中有8人合格,从而,
,所以.
(3)因为合格的人共有18人,其中有女生有10人合格,男生有8人合格,
依题意,的取值为0,1,2,
则 ,
因此,X的分布列如下:
| 0 | 1 | 2 |
|
|
|
(人).
或是,因为服从超几何分布,所以(人).
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线 与椭圆交于两点,点(0,1),且=,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣2)ex﹣+x,其中∈R,e是自然对数的底数.
(1)当>0时,讨论函数f(x)在(1,+∞)上的单调性;
(2)若函数g(x)=f(x)+2﹣,证明:使g(x)≥0在上恒成立的实数a能取到的最大整数值为1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点( )
A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变
B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变
C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变
D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的各项都是正数,若对于任意的正整数,存在,使得、、成等比数列,则称函数为“型”数列.
(1)若是“型”数列,且,,求的值;
(2)若是“型”数列,且,,求的前项和;
(3)若既是“型”数列,又是“型”数列,求证:数列是等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,射线和均为笔直的公路,扇形区域(含边界)是一蔬菜种植园,其中、分别在射线和上.经测量得,扇形的圆心角(即)为、半径为1千米.为了方便菜农经营,打算在扇形区域外修建一条公路,分别与射线、交于、两点,并要求与扇形弧相切于点.设(单位:弧度),假设所有公路的宽度均忽略不计.
(1)试将公路的长度表示为的函数,并写出的取值范围;
(2)试确定的值,使得公路的长度最小,并求出其最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,B是AC的中点,,P是平行四边形BCDE内(含边界)的一点,且.有以下结论:
①当x=0时,y∈[2,3];
②当P是线段CE的中点时,;
③若x+y为定值1,则在平面直角坐标系中,点P的轨迹是一条线段;
④x﹣y的最大值为﹣1;
其中你认为正确的所有结论的序号为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com