分析 根据平面向量共线定理$\overrightarrow{a}$=λ$\overrightarrow{b}$或$\overrightarrow{b}$=λ$\overrightarrow{a}$,对题目中的两个向量进行判断即可.
解答 解:(1)∵$\overrightarrow{a}$=-$\frac{3}{2}$$\overrightarrow{e}$,$\overrightarrow{b}$=2$\overrightarrow{e}$,
∴$\overrightarrow{b}$=-$\frac{4}{3}$$\overrightarrow{a}$,
∴向量$\overrightarrow{a}与\overrightarrow{b}$共线;
(2)∵$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,
∴$\overrightarrow{b}$=-3($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)=-3$\overrightarrow{a}$,
∴向量$\overrightarrow{a}与\overrightarrow{b}$共线;
(3)∵$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,
设$\overrightarrow{b}$=λ$\overrightarrow{a}$,λ∈R,
则$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$=λ($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),
解得$\left\{\begin{array}{l}{λ=1}\\{λ=-1}\end{array}\right.$,
∴λ不存在,即向量$\overrightarrow{a}与\overrightarrow{b}$不共线.
点评 本题考查了平面向量共线定理的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com