精英家教网 > 高中数学 > 题目详情
20.点P是底边长为2$\sqrt{3}$,高为2的正三棱柱表面上的动点,Q是该棱柱内切球表面上的动点,则|PQ|的取值范围是(  )
A.[0,$\sqrt{3}+1$]B.[0,$\sqrt{5}+1$]C.[0,3]D.[1,$\sqrt{5}+1$]

分析 分别分Q在内切球和外接球两种情况解答.

解答 解:当Q在内切球上时,与Q点重合|PQ|最小为0;
Q在外接球上时,外接球半径为$\sqrt{{1}^{2}+(\frac{2}{3}×3)^{2}}$=$\sqrt{5}$,所以|PQ|的最大值为外接球半径与内切球半径的和为$\sqrt{5}$+1;
故选:B

点评 本题考查了学生空间想象能力以及计算能力;关键是找到使|PQ|取最值的位置;属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.点P(a,3)到直线4x-3y+1=0的距离等于4,则P点的坐标是(  )
A.(7,3)B.(3,3)C.(7,3)或(-3,3)D.(-7,3)或(3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数g(x)=1+$\frac{2}{{2}^{x}-1}$.
(1)判断函数g(x)的奇偶性
(2)用定义证明函数g(x)在(-∞,0)上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.sin(-1665°)的值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列$\frac{\sqrt{3}}{2}$、$\frac{\sqrt{5}}{4}$、$\frac{\sqrt{7}}{6}$、$\frac{3}{a-b}$、$\frac{\sqrt{a+b}}{10}$…根据前三项给出的规律,则实数对(a,b)可能是(  )
A.(10,2)B.(10,-2)C.($\frac{19}{2}$,$\frac{3}{2}$)D.($\frac{19}{2}$,-$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=3x与$f(x)={({\frac{1}{3}})^x}$的图象关于(  )
A.坐标原点对称B.x轴对称C.y轴对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=x-\frac{1}{x}$;
(1)证明f(x)在区间(0,+∞)为单调递增函数;
(2)求f(x)在[1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={(\frac{1}{3})^x},x∈[{-1,1}]$,函数g(x)=f2(x)-2af(x)+3
(1)若a=1,证明:函数g(x)在区间[-1,0]上为减函数;
(2)求g(x)的最小值h(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.直线y=kx-2交抛物线y2=x于A、B两点,(1)求k的取值范围;(2)若AB的中点横坐标为2,求|AB|的值.

查看答案和解析>>

同步练习册答案