精英家教网 > 高中数学 > 题目详情

【题目】已知线段AB的两个端点AB分别在x轴和y轴上滑动,且∣AB∣=2

(1)求线段AB的中点P的轨迹C的方程;

(2)求过点M(1,2)且和轨迹C相切的直线方程.

【答案】(1)x2+y2=1(2) x=13x-4y+5=0

【解析】本题考查点轨迹方程的求法,两点间的距离公式的应用,体现了分类讨论的数学思想,注意考虑切线的斜率不存在的情况,这是易错点

1)设Pxy),由|AB|=2,且PAB的中点,可得|OP|=1,由两点间的距离公式求得点P的轨迹方程.

2当切线的斜率不存在时,由条件易得x=1符合条件;当切线的斜率存在时,设出切线方程,由切线的性质可解得斜率k的值,用点斜式求得切线方程.

: (1) 方法一:设P(x , y ),

∵∣AB∣=2,PAB的中点,

∴∣OP∣=1 ……………………2

P的轨迹方程为x2+y2=1……………………4

方法二:设P(x , y )∵PAB的中点,

∴A (2x , 0 ), B(0 , 2y ), ………………………2

∵∣AB∣=2 ∴(2x)2+(2y)2=2

化简得点P的轨迹C的方程为x2+y2=1……………4

(2) ①当切线的斜率不存在时,切线方程为x=1,

由条件易得 x=1符合条件; ………………5

当切线的斜率存在时,设切线方程为 y-2=k(x-1) kx-y+2-k=0

k=, 切线方程为y-2= (x-1)

3x-4y+5=0

综上,过点M(12)且和轨迹C相切的直线方程为:

x=1 3x-4y+5=0 ……………………8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知右焦点为F(c,0)的椭圆M: =1(a>b>0)过点 ,且椭圆M关于直线x=c对称的图形过坐标原点.
(1)求椭圆M的方程;
(2)过点(4,0)且不垂直于y轴的直线与椭圆M交于P,Q两点,点Q关于x轴的对称原点为E,证明:直线PE与x轴的交点为F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.若使租赁公司的月收益最大,每辆车的月租金应该定为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是圆柱的母线, 的直径, 是底面圆周上异于的任意一点, .

(1)求证:

(2)当三棱锥的体积最大时,求与平面所成角的大小;

(3)上是否存在一点,使二面角的平面角为45°?若存在,求出此时的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义域为的奇函数,, .

(1)写出函数的解析式.

(2)若方程恰有3个不同的解,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的离心率为e,经过第一、三象限的渐近线的斜率为k,且e≥ k.
(1)求m的取值范围;
(2)设条件p:e≥ k;条件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若用“五点法”在给定的坐标系中,画出函数[0,π]上的图象.

(2)若偶函数,求

(3)在(2)的前提下,将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标变为原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 分别为的中点.

(1)求证: 平面

(2)求证: 平面

(3)若二面角的大小为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为,田忌的三匹马分别为 .三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛的优劣程度可以用以下不等式表示: .

(1)如果双方均不知道对方马的出场顺序,求田忌获胜的概率;

(2)为了得到更大的获胜概率,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马,那么,田忌应怎样安排出马的顺序,才能使自己获胜的概率最大?最大概率是多少?

查看答案和解析>>

同步练习册答案