精英家教网 > 高中数学 > 题目详情

【题目】是指大气中空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物我国标准采用世界卫生组织设定的最宽限值,即日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标某城市环保局从该市市区2017年上半年每天的监测数据中随机抽取18天的数据作为样本,将监测值绘制成茎叶图如下图所示(十位为茎,个位为叶)

(Ⅰ)在这18个数据中随机抽取3个数据,求其中恰有2个数据为空气质量达到一级的概率;

(Ⅱ)在这18个数据中随机抽取3个数据表示其中超标数据的个数,求的分布列及数学期望;

(Ⅲ)以这18天的日均值来估计一年的空气质量情况,则一年(按360天计算)中约有多少天的空气质量为二级

【答案】(1)(2)见解析(3)一年(按天计算)中约有天的空气质量为二级

【解析】试题分析】(I)根据超几何分布概率计算公式计算恰有个数据为空气质量达到一级的概率.(II)的可能取值为0123.利用超几何分布计算出分布列并计算出数学期望.(III)每一天质量为级的概率为,天相当于次独立重复实验,符合二项分布,故约有天二级.

试题解析】

(Ⅰ)概率

(Ⅱ)由题意,服从超几何分布:其中,,

的可能取值为0123.由,得

所以的分布列为:

得期望或用公式

(Ⅲ)由题意,一年中空气质量为二级的概率

所以一年(按天计算)中约有天的空气质量为二级

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c,其图象与y轴的交点为(0,1),且满足f(1﹣x)=f(1+x).

(1)求f(x);

(2)设 m0,求函数g(x)在[0m]上的最大值;

(3)设h(x)=lnf(x),若对于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是正三角形的三棱锥中,D 为PC的中点,

1)求证:平面

2)求 BD 与平面 ABC 所成角的大小;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校选派甲、乙、丙、丁、戊5名学生代表学校参加市级“演讲”和“诗词”比赛下面是他们的一段对话甲说:“乙参加‘演讲’比赛”;乙说:“丙参加‘诗词’比赛”;丙说“丁参加‘演讲’比赛”丁说:“戊参加‘诗词’比赛”戊说:“丁参加‘诗词’比赛”

已知这5个人中有2人参加演讲比赛3人参加诗词比赛,其中有2人说的不正确且参加“演讲”的2人中只有1人说的不正确.根据以上信息,可以确定参加“演讲”比赛的学生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若函数f(x)=ax2-x-1有且仅有一个零点, 求实数a的值.

(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)时,解不等式:

(2)时,存在最小值,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行下面的程序框图,如果输入的,则输出的( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.

(1)当x∈Z时,求A的非空真子集的个数;

(2)当x∈R时,若A∩B=,求实数m的取值范围.

查看答案和解析>>

同步练习册答案