精英家教网 > 高中数学 > 题目详情
14.(1)填写如表:
α$\frac{π}{6}$$\frac{π}{4}$$\frac{π}{3}$
sinα$\frac{1}{2}$$\frac{\sqrt{2}}{2}$$\frac{\sqrt{3}}{2}$
cosα$\frac{\sqrt{3}}{2}$$\frac{\sqrt{2}}{2}$$\frac{1}{2}$
(2)化简:$\frac{cos(180°+α)•sin(α+360°)}{sin(-α-180°)•cos(-180°-α)}$.

分析 (1)利用特殊角的三角函数值即可得出.
(2)利用诱导公式即可得出.

解答 解:(1)填写如表:

α$\frac{π}{6}$$\frac{π}{4}$$\frac{π}{3}$
sinα$\frac{1}{2}$$\frac{\sqrt{2}}{2}$$\frac{\sqrt{3}}{2}$
cosα$\frac{\sqrt{3}}{2}$$\frac{\sqrt{2}}{2}$$\frac{1}{2}$
(2)$\frac{cos(180°+α)•sin(α+360°)}{sin(-α-180°)•cos(-180°-α)}$=$\frac{-cosα•sinα}{sinα•(-cosα)}$=1.
故答案如表格表示.

点评 本题考查了特殊角的三角函数值、诱导公式,考查推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴两端点为B1(0,-1)、B2(0,1),离心率e=$\frac{\sqrt{3}}{2}$,点P是椭圆C上不在坐标轴上的任意一点,直线B1P和B2P分别与x轴相交于M,N两点,
(Ⅰ)求椭圆C的方程和|OM|•|ON|的值;
(Ⅱ)若点M坐标为(1,0),过M点的直线l与椭圆C相交于A,B两点,试求△ABN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=3cos(ωx-$\frac{π}{4}$)(1<ω<14)的图象关于x=$\frac{π}{12}$对称,则ω等于(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sinωx(ω>0)的图象中相邻两条对称轴之间的距离为2π,将f(x)的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象,g(x)在[0,$\frac{π}{2}$]上的最大值为1.
(1)求函数g(x)的解析式;
(2)在△ABC中,内角A、B、C的对边分别为a、b、c,若C是函数g(x)的最小正零点,且c=4,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知log23=a,log72=b,则log421=$\frac{ab+1}{2b}$.(用a,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知tan(π-α)=-3,
(1)求tanα的值.
(2)求$\frac{{sin({π-α})-cos({π+α})-sin({2π-α})+cos({-α})}}{{sin({\frac{π}{2}-α})+cos({\frac{3π}{2}-α})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=9x-2.3x,则f-1(0)=log32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的实轴长等于8,虚轴长等于6,离心率是$\frac{5}{4}$,焦点坐标是(±5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知tanθ=$\frac{1}{2}$,则tan($\frac{π}{4}$-θ)=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

同步练习册答案