精英家教网 > 高中数学 > 题目详情
已知A,B,C三点在球心为O,半径为3的球面上,且几何体O-ABC为正四面体,那么A,B两点的球面距离为______;点O到平面ABC的距离为______.
作出图形,
∵几何体O-ABC为正四面体,
∴球心角∠AOB=
π
3

∴A,B两点的球面距离=
π
3
×3=π

∵几何体O-ABC为正四面体,
∴球心在平面ABC上的射影是三角形的中心Q,
∴点O到平面ABC的距离为OQ,
在直角三角形OAQ中,
OA=3,AQ=
2
3
AD=
3

∴OQ=
9-3
=
6

故答案为:π,
6

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,已知四棱锥P-ABCD的底面为正方形,PA⊥底面ABCD,且PA=AB=2,M是PB的中点,则点P到平面ACM的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点B是点A(1,2,3)在坐标面xOy内的射影,其中O为坐标原点,则|
OB
|等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从点M(0,2,1)出发的光线,经过平面xoy反射到达点N(2,0,2),则光线所行走的路程为(  )
A.3B.4C.3
2
D.
17

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥P-ABC中,PA⊥AB,PA⊥AC,∠ACB=90°(如图)
(1)求证:PA⊥BC;
(2)若PA=AC=BC=1,求点C到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平行六面体ABCD=A1B1C1D1中,AB=1,AD=2,AA1=3.∠BAD=90°,∠BAA1=∠DAA1=60°
求AC1的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥S-ABCD中,ABCD,CD⊥面SAD.且
1
2
CD=SA=AD=SD=AB=1

(1)当H为SD中点时,求证:AH平面SBC;平面SBC⊥平面SCD.
(2)求点D到平面SBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=
1
2
PA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)求证OD平面PAB;
(Ⅱ)求直线OD与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体A1B1C1D1-ABCD各棱所在的直线中,与直线AB异面的有(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案