精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形SABC中,∠B=∠C= ,D为边SC上的点,且AD⊥SC,现将△SAD沿AD折起到达PAD的位置(折起后点S记为P),并使得PA⊥AB.
(1)求证:PD⊥平面ABCD;
(2)已知PD=AD,PD+AD+DC=6,G是AD的中点,当线段PB取得最小值时,则在平面PBC上是否存在点F,使得FG⊥平面PBC?若存在,确定点F的位置,若不存在,请说明理由.

【答案】
(1)证明:∵PA⊥AB,AB⊥AD,PA⊥AD=A,

∴AB⊥平面PAD,

∵PD平面PAD,

∴AB⊥PD,

∵PD⊥AD,AD∩AB=A,

∴PD⊥平面ABCD


(2)解:设PD=x,则AD=x,DC=6﹣2x,

∴PB2=x2+x2+(6﹣2x)2=6(x﹣2)2+12,当且仅当x=2时,PB2取得最小值,

即PB取得最小值,

取PC的中点M,PB的中点N,

则DM⊥平面PBC,

∵四边形DMNG是平行四边形,

∴GN∥DM,

GN⊥平面PBC,

∴在平面PBC上存在点F,即PB的中点,使FG⊥平面PBC.


【解析】(1)根据线面垂直的判定定理即可证明PD⊥平面ABCD;(2)根据线面垂直的判定定理以及直线平行的性质进行证明即可.
【考点精析】本题主要考查了直线与平面垂直的判定的相关知识点,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过抛物线 的焦点,斜率为 的直线交抛物线于 )两点,且 .
(1)求该抛物线的方程;
(2) 为坐标原点, 为抛物线上一点,若 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某淘宝商城在2017年前7个月的销售额 (单位:万元)的数据如下表,已知具有较好的线性关系.

1关于的线性回归方程;

2分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.

:回归直线的斜率和截距的最小二乘估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在区间上存在零点,求实数的取值范围;

(2)当时,若对任意的,总存在使成立,求实数的取值范围;

(3)若的值域为区间,是否存在常数,使区间的长度为?若存在,求出的值,若不存在,请说明理由.(柱:区间的长度为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥 的底面 是矩形,平面 平面 的中点,且 , .

(Ⅰ)求证: 平面
(Ⅱ) 求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 :方程 表示焦点在 轴上的椭圆,命题 :双曲线 的离心率 ,若命题 中有且只有一个为真命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1) 证明:数列是等比数列;

(2) 求使不等式成立的所有正整数m、n的值;

(3) 如果常数0 < t < 3,对于任意的正整数k,都有成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为数列的前项和,向量

(1)若,求数列通项公式;

(2)若

证明:数列为等差数列;

②设数列满足,问是否存在正整数使得成等比数列,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为.

)求抽取的卡片上的数字满足的概率;

)求抽取的卡片上的数字不完全相同的概率.

查看答案和解析>>

同步练习册答案