精英家教网 > 高中数学 > 题目详情
(2012•威海二模)若集合A1,A2…An满足A1∪A2∪…∪An=A,则称A1,A2…An为集合A的一种拆分.已知:
①当A1∪A2={a1,a2,a3}时,有33种拆分;
②当A1∪A2∪A3={a1,a2,a3,a4}时,有74种拆分;
③当A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}时,有155种拆分;

由以上结论,推测出一般结论:
当A1∪A2∪…An={a1,a2,a3,…an+1}有
(2n-1)n+1
(2n-1)n+1
种拆分.
分析:观察所给的几个集合的拆分种数,发现规律,由此推测出一般结论即可.
解答:解:观察①当A1∪A2={a1,a2,a3}时,有33种拆分;
②当A1∪A2∪A3={a1,a2,a3,a4}时,有74种拆分;
③当A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}时,有155种拆分;

其中33=(22-1)2+1,74=(23-1)3+1,155=(24-1)4+1,…
由以上结论,推测出;当A1∪A2∪…An={a1,a2,a3,…an+1}有 (2n-1)n+1种拆分.
故答案为:(2n-1)n+1
点评:本题主要考查了合情推理中的归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•威海二模)如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则
AM
AN
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)在等比数列{an}中,a2=
1
4
a3a6=
1
512
.设bn=log2
a
2
n
2•log2
a
2
n+1
2
T
 
n
为数列{bn}的前n项和.
(Ⅰ)求an和Tn
(Ⅱ)若对任意的n∈N*,不等式λTn<n-2(-1)n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)如图,边长为2的正方形内有一不规则阴影部分,随机向正方形内投入200粒芝麻,恰有60粒落入阴影部分,则不规则图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是
3
4
2
3
1
4
且各轮次通过与否相互独立.
(I)设该选手参赛的轮次为ξ,求ξ的分布列和数学期望;
(Ⅱ)对于(I)中的ξ,设“函数f(x)=3sin
x+ξ
2
π(x∈R)是偶函数”为事件D,求事件D发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)某商场调查旅游鞋的销售情况,随机抽取了部分顾客的购鞋尺寸,整理得如下频率分布直方图,其中直方图从左至右的前3个小矩形的面积之比为1:2:3,则购鞋尺寸在[39.5,43.5)内的顾客所占百分比为
55%
55%

查看答案和解析>>

同步练习册答案