精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

某市为了对学生的数理(数学与物理)学习能力进行分析,从10000名学生中随机抽出100位学生的数理综合学习能力等级分数(6分制)作为样本,分数频数分布如下表:

等级得分

人数

3

17

30

30

17

3

(Ⅰ)如果以能力等级分数大于4分作为良好的标准,从样本中任意抽取2名学生,求恰有1名学生为良好的概率;

(Ⅱ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为1.5)作为代表:

(ⅰ)据此,计算这100名学生数理学习能力等级分数的期望及标准差(精确到0.1);

(ⅱ) 若总体服从正态分布,以样本估计总体,估计该市这10000名学生中数理学习能力等级在范围内的人数 .

(Ⅲ)从这10000名学生中任意抽取5名同学,

他们数学与物理单科学习能力等级分

数如下表:

(ⅰ)请画出上表数据的散点图;

(ⅱ)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(附参考数据:

 

 

【答案】

解:(Ⅰ)样本中,学生为良好的人数为20人.故从样本中任意抽取2名学生,则仅有1名学生为良好的概率为

-------------2分

(Ⅱ) (ⅰ)总体数据的期望约为:=0.5×0.03+1.5×0.17+2.5×0.30+3.5×0.30+4.5×0.17+5.5×0.03=3.0-------------4分

标准差=

1.1---------------6分

(ⅱ)由于=3, 1.1

当x时,即x(-,+)

故数学学习能力等级分数在范围中的概率0.6826.

数学学习能力等级在范围中的学生的人数约为6826人.-----------------8分

(Ⅲ)

(ⅰ)数据的散点图如下图:

-------------9分

(ⅱ)设线性回归方程为,则

方法一: ==1.1  =4-1.1×4=-0.4

故回归直线方程为-----12分

方法二:

        

      ∴时,

取得最小值10b-22b+12.5

即,∴时f(a,b)取得最小值;

所以线性回归方程为.---------12分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案