已知椭圆的两个焦点和上下两个顶点是一个边长为2且∠F1B1F2为的菱形的四个顶点.
(1)求椭圆的方程;
(2)过右焦点F2 ,斜率为()的直线与椭圆相交于两点,A为椭圆的右顶点,直线、分别交直线于点、,线段的中点为,记直线的斜率为.求证:为定值.
(1);(2)为定值.
解析试题分析:(1)由椭圆两个焦点和上下两个顶点是一个边长为2且∠F1B1F2为的菱形的四个顶点可得,从而得到椭圆方程.(2)通过题目条件,将直线方程设出来,再将它与椭圆交点坐标设出来,即点,点,再分别表示出直线、的方程,令,得到点,,的坐标,再利用中点坐标公式得到线段的中点为的坐标,利用斜率公式即得到,通过联立直线与椭圆方程,用韦达定理替换,,化简之后即可证明为定值.本题利用“设而不求”达到证明的目的,充分利用韦达定理消去繁杂的未知数.这是解决带有直线与圆锥曲线交点问题的常用的手段.
试题解析:(1)由条件知, 2分
故所求椭圆方程为. 4分
(2)设过点的直线方程为:,设点,点,
将直线方程代入椭圆:,
整理得:, 6分
因为点在椭圆内,所以直线和椭圆都相交,恒成立,且
8分
直线的方程为:,直线的方程为:,令,
得点,,所以点的坐标. 9分
直线的斜率为.
. 11分
将代入上式得:
.
所以为定值. 14分
考点:1.椭圆的简单几何性质;2.直线与圆锥曲线的位置关系;3.斜率公式及直线方程.
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是。
(1)求双曲线的方程;
(2)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N
(1)求的值;
(2)记直线MN的斜率为,直线AB的斜率为 证明:为定值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的左焦点为,右焦点为.
(Ⅰ)设直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求点M的轨迹的方程;
(Ⅱ)设为坐标原点,取曲线上不同于的点,以为直径作圆与相交另外一点,求该圆的面积最小时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在轴上,焦距为,且经过点,直线交椭圆于不同的两点A,B.
(1)求的取值范围;,
(2)若直线不经过点,求证:直线的斜率互为相反数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆()右顶点与右焦点的距离为,短轴长为.
(I)求椭圆的方程;
(II)过左焦点的直线与椭圆分别交于、两点,若三角形的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆经过点离心率,直线的方程为.
(Ⅰ)求椭圆的方程;
(Ⅱ)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得若存在求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com