如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切
点为H.求证:(1)C,D,F,E四点共圆;
(2)GH2=GE·GF.
(1)连接BC.∵AB是⊙O的直径,
∴∠ACB=90°.
∵AG⊥FG,∴∠AGE=90°.
又∠EAG=∠BAC,
∴∠ABC=∠AEG.
又∠FDC=∠ABC,
∴∠FDC=∠AEG.
∴∠FDC+∠CEF=180°.
∴C,D,F,E四点共圆. 7分
(2)∵GH为⊙O的切线,GCD为割线,
∴GH2=GC·GD.
由C,D,F,E四点共圆,
得∠GCE=∠AFE,∠GEC=∠GDF.
∴△GCE∽△GFD.∴=,
即GC·GD=GE·GF.
∴CH2=GE·GF.
(1)连接BC.∵AB是⊙O的直径,
∴∠ACB=90°.
∵AG⊥FG,∴∠AGE=90°.
又∠EAG=∠BAC,
∴∠ABC=∠AEG.
又∠FDC=∠ABC,
∴∠FDC=∠AEG.
∴∠FDC+∠CEF=180°.
∴C,D,F,E四点共圆. 7分
(2)∵GH为⊙O的切线,GCD为割线,
∴GH2=GC·GD.
由C,D,F,E四点共圆,
得∠GCE=∠AFE,∠GEC=∠GDF.
∴△GCE∽△GFD.∴=,
即GC·GD=GE·GF.
∴CH2=GE·GF. 14分
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
AB |
查看答案和解析>>
科目:高中数学 来源: 题型:
24 |
5 |
24 |
5 |
查看答案和解析>>
科目:高中数学 来源: 题型:
24 |
5 |
24 |
5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com