(本小题满分14分)
从某学校高一年级名学生中随机抽取名测量身高,据测量被抽取的学生的身高全部介于和之间,将测量结果按如下方式分成八组:第一组.第二组;…第八组,右图
是按上述分组方法得到的条形图.
(1)根据已知条件填写下面表格:
组 别 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
样本数 |
(2)估计这所学校高一年级名学生中身高在以上(含)的人数;
(3)在样本中,若第二组有人为男生,其余为女生,第七组有人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?
解:(1)由条形图得第七组频率为
.
∴第七组的人数为3人. ……………………………………………………………… 1分
组别 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
样本中人数 | 2 | 4 | 10 | 10 | 15 | 4 | 3 | 2 |
………………………………… 4分
(2)解:由条形图得前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1-0.82=0.18.
估计这所学校高三年级身高在180cm以上(含180cm)的人数800×0.18=144(人). …………… 8分
(3)第二组四人记为、、、,其中a为男生,b、c、d为女生,第七组三人记为1、2、3,
其中1、2为男生,3为女生,基本事件列表如下: ……………………………………………… 9分
a | B | c | d | |
1 | 1a | 1b | 1c | 1d |
2 | 2a | 2b | 2c | 2d |
3 | 3a | 3b | 3c | 3d |
………… 12分
所以基本事件有12个,恰为一男一女的事件有1b,1c,1d,2b,2c,2d,3a共7个, ……… 13分
因此实验小组中,恰为一男一女的概率是. ………………………………………… 14分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com