精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(1)=l,且对一切x∈R都有f′(x)<4,则不等式f(x)>4x-3的解集为(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)
考点:其他不等式的解法
专题:不等式的解法及应用
分析:根据条件,将不等式进行转化,然后构造函数,利用函数单调性和导数之间的关系,判断函数的单调性,即可得到结论.
解答: 解:等式f(x)>4x-3等价为f(x)-4x+3>0,
构造函数g(x)=f(x)-4x+3,则g′(x)=f′(x)-4,
∵对一切x∈R都有f′(x)<4,∴g′(x)=f′(x)-4<0,即函数g(x)单调递减.
∵f(1)=1,∴g(1)=f(1)-4+3=1-4+3=0,即不等式f(x)-4x+3>0,等价为g(x)>g(1).
∵函数g(x)单调递减,∴x<1.故不等式的解集为{x|x<1}.
故选:C.
点评:本题主要考查不等式的解法,根据条件构造函数,利用函数单调性和导数之间的关系是解决本题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)过点A(1,
3
2
),它的一个焦点是F(-1,0).
(1)求椭圆的方程;
(2)P,Q是椭圆C上的两个动点,如果直线AP的倾斜角与AQ的倾斜角互补,证明:直线PQ定向(即该直线的斜率为定值).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-4(x≤1)
x2-2x-1(x>1)
则函数y=f(x)-log2x的零点的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)的离心率为
2
2
,其左右焦点分别为F1,F2,点P(x0,y0)是圆x2+y2=
7
4
上一点,且
PF1
PF2
=
3
4

(1)求椭圆C的方程;
(2)设不垂直x轴的直N线l:y=kx+m与椭圆C交于M,N两点,直线F2M与F2N倾斜角分别为α,β,且α+β=π.证明直线l过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x(9-x),对于任意给定的m位自然数n0=
.
amam-1a2a1
(其中a1是个位数字,a2是十位数字,…),定义变换A:A(n0)=f(a1)+f(a2)+…+f(am).并规定A(0)=0.记n1=A(n0),n2=A(n1),…,nk=A(nk-1),….
(Ⅰ)若n0=2015,求n2015
(Ⅱ)当m≥3时,证明:对于任意的m(m∈N*)位自然数n均有A(n)<10m-1
(Ⅲ)如果n0<10m(m∈N*,m≥3),写出nm的所有可能取值.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(0,1),
b
=(1,0)且(
a
-
c
)•(
b
-
c
)=0,则|
c
|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|ax-1|与g(x)=(a-1)x的图象没有交点,那么实数a的取值范围是(  )
A、(-∞,0]
B、(0,
1
2
)
C、[
1
2
,1)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若x1,x2是函数f(x)=x2+mx-2(m∈R)的两个零点,且x1<x2,则x2-x1的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域Ω={(x,y)|
y≥0
y≤
4-x2
,直线y=mx+2m和曲线y=
4-x2
有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若0≤m≤1,则P(M)的取值范围为(  )
A、(0,
π-2
]
B、(0,
π+2
]
C、[
π+2
,1]
D、[
π-2
,1]

查看答案和解析>>

同步练习册答案