精英家教网 > 高中数学 > 题目详情
已知下列函数①y=4x2y=x
1
2
③y=x2-4x④y=|x+
1
x
|
y=-
3
x-2
⑥y=2|x|.其中在其定义域上是偶函数,又在区间(1,+∞)上单调递增函数的有
①④⑥
①④⑥
(写出你认为正确的所有答案).
分析:先根据定义域是否关于原点对称排除②⑤;再根据单调性排除③即可得到答案.
解答:解:因为函数②⑤的定义域不关于原点对称,不存在奇偶性,故不成立;
③的对称轴方程为:在[1,+∞)先减后增,故不成立;
所以符合要求的只有①④⑥.
故答案为:①④⑥.
点评:本题主要考查奇偶性与单调性的综合.判断函数存在奇偶性时,应先看定义域,只有定义域关于原点对称,才有可能存在奇偶性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列四个命题:
①把y=2cos(3x+
π
6
)的图象上每点的横坐标和纵坐标都变为原来的
3
2
倍,再把图象向右平移
π
2
单位,所得图象解析式为y=2sin(2x-
π
3

②若m∥α,n∥β,α⊥β,则m⊥n
③在△ABC中,M是BC的中点,AM=3,点P在AM上且满足
AP
=2
PM
,则
PA
•(
PB
+
PC
 )
等于-4.
④函数f(x)=xsinx在区间[0,
π
2
]
上单调递增,函数f(x)在区间[-
π
2
,0]
上单调递减.
其中是真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为D的函数y=f(x),若对于任意x∈D,存在正数K,都有|f(x)|≤K|x|成立,那么称函数y=f(x)是D上的“倍约束函数”,已知下列函数:
①f(x)=2x;
②f(x)=2sin(x+
π
4
);     
③f(x)=x3-2x2+x;    
④f(x)=
x2
x2+x+1

其中是“倍约束函数”的是
①④
①④
.(将你认为正确的函数序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题四个命题:
①函数y=sin(
π
4
-2x)
的单调递增区间是[kπ-
π
8
,kπ+
8
](k∈Z)

②若x是第一象限的角,则y=sinx是增函数;
α,β∈(0,
π
2
)
,且cosα<sinβ,则α+β>
π
2

④若sinx+siny=
1
3
,则siny-cos2x的最大值是
4
3

其中真命题的个数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知下列函数中:
①y=x4-2x2; ②y=-|x|+1; ③y=x3-x; ④y=x5+1

以其中任何两个解析式相乘得到一个新函数,这样能得到的奇函数最多有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义域为D的函数y=f(x),若对于任意x∈D,存在正数K,都有|f(x)|≤K|x|成立,那么称函数y=f(x)是D上的“倍约束函数”,已知下列函数:
①f(x)=2x;
②f(x)=2sin(x+
π
4
);     
③f(x)=x3-2x2+x;    
④f(x)=
x2
x2+x+1

其中是“倍约束函数”的是______.(将你认为正确的函数序号都填上)

查看答案和解析>>

同步练习册答案