精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在{-2,-1,0,1,2}上的奇函数,且f(-1)=
12
,f(2)=1,则f(0)=
 
;f(x)的值域是
 
分析:根据奇函数的性质得到f(0)=0,再根据f(-x)=-f(x)分别求得x=-2,x=-1,x=0,x=1,x=2时f(x)的取值,得到f(x)的值域.
解答:解:根据奇函数的性质得f(0)=0,
又f(-x)=-f(x),f(-1)=
1
2
,f(2)=1
∴f(1)=-
1
2
,f(-2)=-1,∴f(x)∈{-1,-
1
2
,0,
1
2
,1}

故答案为:0;{-1,-
1
2
,0,
1
2
,1}
点评:本题考查了奇函数的性质,要求会利用函数的奇偶性进行解题,能根据奇函数的定义求解相关问题,特别注意奇函数中f(0)=0得应用,能使得解题更为快捷简便.值域要注意答案的书写,要写成集合或区间的形式,学生极容易出错.本题属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案