精英家教网 > 高中数学 > 题目详情

f(x)=x3-ax-1
(1)若f(x)在实数集R上单调递增,求实数a的取值范围;
(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a得取值范围;若不存在,说明理由.

解:(1)f′(x)=3x2-a,3x2-a≥0在R上恒成立,∴a≤0.
又a=0时,f(x)=x3-1在R上单调递增,∴a≤0.
(2)假设存在a满足条件,由题意知,
f′(x)=3x2-a≤0在(-1,1)上恒成立,
即a≥3x2在(-1,1)上恒成立,∴a≥3.
又a=3,f(x)=x3-3x-1,f′(x)=3(x2-1)在(-1,1)上,
f′(x)<0恒成立,即f(x)在(-1,1)上单调递减,
∴a≥3.
分析:(1)先求出函数f(x)的导函数f′(x),要使f(x)在实数集R上单调递增,只需f′(x)≥0在R上恒成立,再验证等号是否成立,即可求出实数a的取值范围;
(2)欲使f(x)在(-1,1)上单调递减,只需f′(x)≤0在(-1,1)上恒成立,利用分离法将a分离出来,求出不等式另一侧的最大值,再验证等号是否成立,即可求出a的范围;
点评:本题主要考查了函数恒成立问题,以及利用导数研究函数的单调性等基础知识,注意验证取等号是否成立,考查计算能力和分析问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设t≠0,点P(t,0)是函数f(x)=x3+ax与g(x)=bx2+c的图象的一个公共点,两函数的图象在点P处有相同的切线.
(Ⅰ)用t表示a,b,c;
(Ⅱ)若函数y=f(x)-g(x)在(-1,3)上单调递减,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x3-ax-1
(1)若f(x)在实数集R上单调递增,求实数a的取值范围;
(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a得取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题:
①若定义在R上的偶函数f(x)在(0,+∞)上单调递增,则f(x)在(-∞,0)上单调递减;
②函数y=
kx2-6kx+9
的定义域为R,则k的取值范围是(0,1];
③要得到y=3sin(3x+
π
4
)
的图象,只需将y=3sin2x的图象左移
π
4
个单位;
④若函数 f(x)=x3-ax在[1,+∞)上是单调递增函数,则a的最大值是3.
所有正确命题的序号为
①④
①④

查看答案和解析>>

同步练习册答案