【题目】已知单调递增的等差数列{an},满足|a10a11|>a10a11 , 且a102<a112 , Sn为其前n项和,则( )
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10为Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10为Sn的最小值
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足f(x)+f(2﹣x)=2,当x∈(0,1]时,f(x)=x2 , 当x∈(﹣1,0]时, ,若定义在(﹣1,3)上的函数g(x)=f(x)﹣t(x+1)有三个不同的零点,则实数t的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,由三棱柱和四棱锥构成的几何体中, 平面, , , ,平面平面.
(Ⅰ)求证: ;
(Ⅱ)若为棱的中点,求证: 平面;
(Ⅲ)在线段上是否存在点,使直线与平面所成的角为?若存在,求的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校餐厅每天供应500名学生用餐,每星期一有A、B两种菜可供选择.调查表明,凡是在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有30%改选A菜.用an , bn分别表示在第n个星期选A的人数和选B的人数,若a1=300,则a20=( )
A.260
B.280
C.300
D.320
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是圆上任意一点,点的坐标为,直线分别与线段交于两点,且.
(1)求点的轨迹的方程;
(2)直线与轨迹相交于两点,设为坐标原点, ,判断的面积是否为定值?若是,求出定值,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,三棱柱中,侧面 底面, ,且,O为中点.
(Ⅰ)证明: 平面;
(Ⅱ)求直线与平面所成角的正弦;
(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com