精英家教网 > 高中数学 > 题目详情
某车间将10名技工平均分为甲、乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
1号 2号 3号 4号 5号
甲组 4 5 7 9 10
乙组 5 6 7 8 9
(I)分别求出甲、乙两组技工在单位时间内完成合成合格零件的平均数及方差,并由此分析两组技工的技术水平;
(II)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.
分析:(1)由表中数据我们易求出两组数据的平均数,代入方差公式后,易求出两组数据的方差,分析平均数,平均数大的一组,表示总体水平高,平均数小的一组,表示总体水平低,平均数相等,表示总体水平相同;方差大的一组,水平差异较大,方差小的一组,水平差异较小.
(2)要计算该车间“质量合格”的概率,我们要先求出从甲、乙两组中各抽取1名技工完成合格零件个数的基本事件总个数,再求出该车间“质量合格”包含的基本事件个数,代入古典概型概率公式,即可求出答案.
解答:解:(I)依题中的数据可得:
.
x
=
1
5
(4+5+7+9+10)=7,
.
x
=
1
5
(6+7+8+9)=7
,(2分)
s
2
=
1
5
[(4-7)2+(5-7)2+(7-7)2+(9-7)2+(10-7)2]=
26
5
=5.2
s
2
=
1
5
[(5-7)2+(6-7)2+(7-7)2+(8-7)2+(9-7)2]=2
(4分)∵
.
x
=
.
x
s
2
s
2

∴两组技工的总体水平相同,甲组中技工的技术水平差异比乙组大.(6分)
(II)设事件A表示:该车间“质量合格”,
则从甲、乙两组中各抽取1名技工完成合格零件个数的基本事件为:
(4,5),(4,6),(4,7),(4,8),(4,9)
(5,5),(5,6),(5,7),(5,8),(5,9)
(7,5),(7,6),(7,7),(7,8),(7,9)
(9,5),(9,6),(9,7),(9,8),(9,9)
(10,5),(10,6),(10,7),(10,8),(10,9)共25种(9分)
事件A包含的基本事件为:
(4,9)
(5,8),(5,9)
(7,6),(7,7),(7,8),(7,9)
(9,5),(9,6),(9,7),(9,8),(9,9)
(10,5),(10,6),(10,7),(10,8),(10,9)共17种(11分)
P(A)=
17
25

答:即该车间“质量合格”的概率为
17
25
.(12分)
点评:本题主要考查在实际背景下,将统计与概率相结合,考查了样本的平均数与方差的计算,以及求随机事件的概率,考查了归纳推理、应用数学知识解决实际问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.
(I)已知两组技工在单位时间内加工的合格零件数的平均数都为10,分别求出m,n的值;
(Ⅱ)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差
S
2
S
2
,并由此分析两组技工的加工水平;
(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“待整改”,求该车间“待整改”的概率.(注:方差,s2=
1
n
[(x1-
.
x
)2+(x2-
.
x
)2+…+(xn-
.
x
)2
,其中
.
x
为数据x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示,已知两组技工在单位时间内加工的合格零件数的平均数都为10. 
(I)分别求出m,n的值;
(Ⅱ)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差
S
2
S
2
,并由此分析两组技工的加工水平.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省深圳高级中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

某车间将10名技工平均分为甲、乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
1号2号3号4号5号
甲组457910
乙组56789
(I)分别求出甲、乙两组技工在单位时间内完成合成合格零件的平均数及方差,并由此分析两组技工的技术水平;
(II)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.

查看答案和解析>>

科目:高中数学 来源:2010年福建省厦门市高三3月质量检查数学试卷(文科)(解析版) 题型:解答题

某车间将10名技工平均分为甲、乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
1号2号3号4号5号
甲组457910
乙组56789
(I)分别求出甲、乙两组技工在单位时间内完成合成合格零件的平均数及方差,并由此分析两组技工的技术水平;
(II)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.

查看答案和解析>>

同步练习册答案