精英家教网 > 高中数学 > 题目详情

如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则数学公式的最大值为________.

9
分析:先以点A为坐标原点,AB所在直线为x轴,建立直角坐标系,求出其它各点的坐标,然后利用点的坐标表示出,把所求问题转化为在平面区域内求线性目标函数的最值问题求解即可.
解答:如图,

以点A为坐标原点,AB所在直线为x轴,建立如图所示的直角坐标系,由于菱形ABCD的边长为2,∠A=60°,M为DC的中点,故点A(0,0),则B(2,0),C(3,),D(1,),M(2,).
设N(x,y),N为菱形内(包括边界)一动点,对应的平面区域即为菱形ABCD及其内部区域.
因为=(x,y),则=2x+y,
令z=2x+,则
由图象可得当目标函数z=2x+y 过点C(3,)时,z=2x+y取得最大值,
此时=9.
故答案为9.
点评:本题主要考查向量在几何中的应用,以及数形结合思想的应用和转化思想的应用,是对基础知识和基本思想的考查,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,菱形ABCD的边长为1,有∠D=120°,点E、F分别是AD、DC的中点,BE、BF分别与AC交于点M、N.
(1)求AC的值.
(2)求MN的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区二模)如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=3
2

(Ⅰ)求证:OM∥平面ABD;
(Ⅱ)求证:平面ABC⊥平面MDO;
(Ⅲ)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD的边长为4,∠BAD=60°,AC∪BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=2
2

(1)求证:OM∥平面ABD;
(2)求证:平面DOM⊥平面ABC;
(3)求三棱锥B-DOM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD的边长为4,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=2
2

(1)求证:OM∥平面ABD;
(2)求证:平面DOM⊥平面ABC;
(3)求二面角D-AB-O余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则
AM
AN
的最大值为
9
9

查看答案和解析>>

同步练习册答案