精英家教网 > 高中数学 > 题目详情
17.如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(-1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB|•|FQ|=|BF•|EQ|.

分析 (1)设AE切圆于M,直线x=4与x轴的交点为N,则EM=EB,可得|EA|+|EB|=|AM|=$\sqrt{A{P}^{2}-P{M}^{2}}$=$\sqrt{A{P}^{2}-P{B}^{2}}$=$\sqrt{A{N}^{2}-B{N}^{2}}$=4;
(2)确定E,F均在椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上,设直线EF的方程为x=my+1(m≠0),联立,E,B,F,Q在同一条直线上,|EB|•|FQ|=|BF•|EQ|等价于-y1•$\frac{3}{m}$+y1y2=y2•$\frac{3}{m}$-y1y2,利用韦达定理,即可证明结论.

解答 证明:(1)设AE切圆于M,直线x=4与x轴的交点为N,则EM=EB,
∴|EA|+|EB|=|AM|=$\sqrt{A{P}^{2}-P{M}^{2}}$=$\sqrt{A{P}^{2}-P{B}^{2}}$=$\sqrt{A{N}^{2}-B{N}^{2}}$=4为定值;
(2)同理|FA|+|FB|=4,
∴E,F均在椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上,
设直线EF的方程为x=my+1(m≠0),令x=4,yQ=$\frac{3}{m}$,
直线与椭圆方程联立得(3m2+4)y2+6my-9=0,
设E(x1,y1),F(x2,y2),则y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=-$\frac{9}{3{m}^{2}+4}$
∵E,B,F,Q在同一条直线上,
∴|EB|•|FQ|=|BF•|EQ|等价于-y1•$\frac{3}{m}$+y1y2=y2•$\frac{3}{m}$-y1y2
∴2y1y2=(y1+y2)•$\frac{3}{m}$,
代入y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=-$\frac{9}{3{m}^{2}+4}$成立,
∴|EB|•|FQ|=|BF•|EQ|.

点评 本题考查椭圆方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知a∈R,函数f(x)=lnx-ax+1.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个不同的零点x1,x2(x1<x2),求实数a的取值范围;
(3)在(2)的条件下,求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(m,1),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(2)若($\overrightarrow{a}$+λ$\overrightarrow{b}$)与$\overrightarrow{b}$垂直,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.A是抛物线y2=2px(p>0)上的一点,F为抛物线的焦点,O为坐标原点,当|AF|=4时,∠OFA=120°,则抛物线的准线方程是(  )
A.x=-1B.y=-1C.x=-2D.y=-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.化简:$\frac{{2sin({π-θ})+sin2θ}}{{{{cos}^2}\frac{θ}{2}}}$=4sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b∈R,则“a+b≥4”是“a≥2且b≥2”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆M:(x-a)2+y2=4(a>0)与圆N:x2+(y-1)2=1外切,则直线x-y-$\sqrt{2}$=0被圆M截得线段的长度为(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.在△ABC中,“A>B”是“sin2A>sin2B”必要不充分条件
C.“若tanα$≠\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题
D.?x0∈(-∞,0)使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知P,Q为椭圆$\frac{x^2}{2}+{y^2}=1$上的两点,满足PF2⊥QF2,其中F1,F2分别为左右焦点.
(1)求$|\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}|$的最小值;
(2)若$(\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}})⊥(\overrightarrow{Q{F_1}}+\overrightarrow{Q{F_2}})$,设直线PQ的斜率为k,求k2的值.

查看答案和解析>>

同步练习册答案