精英家教网 > 高中数学 > 题目详情
2.若U=R,集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x2-1)的定义域,则图中阴影部分对应的集合为(  )
A.(-1,1)B.[-1,1]C.[1,2)D.(1,2]

分析 阴影部分表示的集合为A∩∁UB,根据集合关系即可得到结论.

解答 解:阴影部分表示的集合为A∩∁UB,
∵A={x|-3≤2x-1≤3|=[-1,2],B=(-∞,-1)∪(1,+∞),
∴∁UB=[-1,1],
∴A∩∁UB=[-1,1],
故选:B.

点评 本题主要考查集合的基本运算,根据图象确定集合关系是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知f(α)=$\frac{sin(\frac{3π}{2}+α)cos(2π-a)tan(π+α)}{cos(-\frac{π}{2}-α)}$,则f(-$\frac{31π}{3}$)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图四棱锥P-ABCD,四边形ABCD是正方形,O是正方形的中心,E是PC的中点,且PA=AB=PB.
(1)求证:PA∥平面BDE;
(2)求EO与AB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若指数函数f(x)=(3m-1)x在R上是减函数,则实数m的取值范围是(  )
A.m>0且m≠1B.m≠$\frac{1}{3}$C.m>$\frac{1}{3}$且m≠$\frac{2}{3}$D.$\frac{1}{3}$<m<$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=lnx+2x+x${\;}^{\frac{1}{2}}$-1,则不等式f(x)>f(2x-4)的解集为(  )
A.(-∞,4)B.(0,4)C.(2,4)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若集合A={x|x2-9x<0},B={x|1<2x<8},则集合A∩B=(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$) 的最小正周期为π,将该函数的图象向左平移$\frac{π}{6}$个单位后,得到的图象对应的函数为奇函数,则函数f(x)的图象(  )
A.关于点($\frac{π}{12}$,0)对称B.关于直线x=$\frac{π}{12}$对称
C.关于点($\frac{5}{12}$π,0)对称D.关于直线x=$\frac{5}{12}$π对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)为偶函数,且f(1+x)=f(1-x),当x∈[0,1]时,f(x)=x2,$g(x)={x^{-\frac{2}{3}}}-\frac{1}{2}$,则函数F(x)=f(x)-g(x)的零点的个数为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我国古代数学名著《张邱建算经》有“分钱问题”:今有与人钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还敛聚与均分之,人得一百钱,问人几何?意思是:将钱分给若干人,第一人给3钱,第二人给4钱,第三人给5钱,以此类推,每人比前一人多给1钱,分完后,再把钱收回平均分给各人,结果每人分得100钱,问有多少人?则题中的人数是195.

查看答案和解析>>

同步练习册答案