【题目】如图,在四棱锥中,,, O为DE的中点,.F为的中点,平面平面BCED.
(1)求证:平面 平面.
(2)线段OC上是否存在点G,使得平面EFG?说明理由。
【答案】(1)证明见解析 (2)不存在,理由见解析
【解析】
(1)题中已知垂直等关系易得平面,因此关键是证明,则可得线面垂直,从而有面面垂直,而可在等腰梯形中通过计算由勾股定理逆定理得证;
(2)假设存在点满足题意,则可证得,是中点,从而有,这与已知矛盾,从而得假设错误,点不存在.
解:(1)因为.所以,又O为DE的中点,
所以.
因为平面平面BCED,且平面,
所以平面BCED.所以.
由于四边形BCED是一个上底为2.下底为4,腰长为 的等腰梯形,易求得.
在 中, ,所以,
所以平面.所以平面 平面.
(2)线段OC上不存在点G,使得平面FFG.
理由如下:
假设线段OC上存在点G,使得平面EFG,
连接GE,GF.则必有.且.
在 中,由F为的中点,,得G为OC的中点.
在中,因为.所以 .这显然与 , 矛盾.
所以线段OC上不存在点G,使得平面EFG.
科目:高中数学 来源: 题型:
【题目】如图,设是棱长为的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则关于此多面体有以下结论:①有个顶点;②有条棱;③有个面;④表面积为;⑤体积为.其中正确的结论是____________.(要求填上所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2-2x-4y=0.
(1)求圆C关于直线x-y-1=0对称的圆D的标准方程;
(2)过点P(4,-4)的直线l被圆C截得的弦长为8,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:①直线的斜率,则直线的倾斜角;②直线:与以、两点为端点的线段相交,则或;③如果实数满足方程,那么的最大值为;④直线与椭圆恒有公共点,则的取值范围是.其中正确命题的序号是______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出己知线段的黄金分割点,具体方法如下:(l)取线段AB=2,过点B作AB的垂线,并用圆规在垂线上截取BC=AB,连接AC;(2)以C为圆心,BC为半径画弧,交AC于点D;(3)以A为圆心,以AD为半径画弧,交AB于点E.则点E即为线段AB的黄金分割点.若在线段AB上随机取一点F,则使得BE≤AF≤AE的概率约为( )(参考数据:2.236)
A. 0.236B. 0.382C. 0.472D. 0.618
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠成交的概率为0.6,以优惠成交的概率为0.4.
(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;
(2)某单位需要这种零件650箱,求购买总价的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱中,AB=3,=4,M为的中点,P是BC边上的一点,且由点P沿棱柱侧面经过棱到M点的最短路线长为,设这条最短路线与的交点为N,求
(1)该三棱柱的侧面展开图的对角线长.
(2)PC和NC的长
(3)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将边长分别为的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第1个、第2个、……、第个阴影部分图形.设前个阴影部分图形的面积的平均值为.记数列满足:.
(1)求的表达式及数列的通项公式;
(2)记若,其中为常数,且恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,,若,().
(1)求函数的解析式;
(2)求函数在条件下的最小值;
(3)把的图像按向量平移得到曲线,过坐标原点作、分别交曲线于点、,直线交轴于点,当为锐角时,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com