如图几何体中,四边形为矩形,,,,,.
(1)若为的中点,证明:面;
(2)求二面角的余弦值.
(1)见解析;(2).
解析试题分析:(1)连接交于点,得知为的中点,连接
根据点为中点,利用三角形中位线定理,得出,进一步得到
面.
(2)首先探究几何体中的线面、线线垂直关系,创造建立空间直角坐标系的条件,应用“向量法”,确定二面角的余弦值.
解答本题的关键是确定“垂直关系”,这也是难点所在,平时学习中,应特别注意转化意识的培养,能从“非规范几何体”,探索得到建立空间直角坐标系的条件.
试题解析:(1)连接交于点,则为的中点,连接
因为点为中点,所以为的中位线,
所以 2分
面,面,
所以面 4分
(2)取中点,的中点,连接,则,
所以共面
作于,于,则且
,
和全等,
和全等,
,为中点,
又,,面
,面 6分
以为原点,为轴建立空间直角坐标系如图所示,则,,,设,则,
科目:高中数学 来源: 题型:解答题
如图,等腰梯形ABCD,AD//BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,.
(1)证明:;
(2)求二面角A-BP-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,
(1)试证:A1、G、C三点共线;
(2)试证:A1C⊥平面BC1D;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(1)求证:DC⊥平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.
(1)求证:PO⊥平面ABCE;
(2)求二面角EAPB的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点.
(1)求证://平面;
(2)求与平面BDE所成角的余弦值;
(3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com