精英家教网 > 高中数学 > 题目详情
2位男生3位女生共5位同学排成一排,则男生不站排头也不站排尾的不同站法种数
 
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:由题意,先排男生,共有
A
2
3
=6种方法,再排女生有
A
3
3
=6种方法,利用乘法原理可得结论.
解答: 解:由题意,先排男生,共有
A
2
3
=6种方法,再排女生有
A
3
3
=6种方法,
利用乘法原理可得男生不站排头也不站排尾的不同站法种数为6×6=36.
故答案为:36
点评:本题考查了两个计数原理,本题采用了优先法解排列组合问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}中,a2•a6=16,a3+a5=10,则数列{an}的前n项和Sn=(  )
A、2n-2-
1
4
B、2n-1-
1
2
C、2n-1
D、2n+1-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,Sn为其前n项和,n∈N,若a8=-3,S20=30,则a13的值为(  )
A、-8B、-6C、6D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

用部分自然数构造如图的数表:用aij(i≥j)表示第i行第j个数(i,j∈N+),使得ai1=aii=i,每行中的其他各数分别等于其“肩膀”上的两个数之和.设第n(n为N+)行的第二个数为bn(n≥2),
(1)写出第6行的第三个数;
(2)写出bn+1与bn的关系并求bn(n≥2);
(3)设(bn-1)cn=1(n≥2),求证:1≤c2+c3+…+cn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,边长之比为5:7:8的最大角与最小角的和是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将容量为n的样本中的数据分成5组,绘制频率分布直方图.若第1至第5个长方形的面积之比3:4:5:2:1,且最后两组数据的频数之各等于15,则n等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

{an}前n项和为Sn,2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列
(1)求a1的值;
(2)求{an}通项公式;
(3)证明
1
a1
+
1
a2
+…+
1
an
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

己知直线 l的参数方程为
x=t
y=2t+1
(t为参数),圆C的参数方程为
x=acosθ
y=asinθ
.(a>0.θ为参数),点P是圆C上的任意一点,若点P到直线l的距离的最大值为
5
5
+1
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

“tanx=
3
3
”是“x=2kπ+
π
6
(k∈Z)”成立的(  )
A、充分不必要条件
B、必要不充分条件
C、充分条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案