精英家教网 > 高中数学 > 题目详情
1.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1的离心率e=$\frac{1}{2}$,则m的值为(  )
A.3B.1C.16或1D.$\frac{16}{3}$或3

分析 分当椭圆焦点在x轴上或焦点在y轴上进行讨论,根据椭圆的标准方程算出a、b、c值,由离心率为$\frac{1}{2}$建立关于m的方程,解之即可得到实数m之值.

解答 解:∵椭圆方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1,
∴①当椭圆焦点在x轴上时,a2=4,b2=m,可得c=$\sqrt{4-m}$,
离心率e=$\frac{\sqrt{4-m}}{2}$=$\frac{1}{2}$,解得m=3;
②当椭圆焦点在y轴上时,a2=m,b2=4,可得c=$\sqrt{m-4}$
离心率e=$\frac{\sqrt{m-4}}{\sqrt{m}}$=$\frac{1}{2}$,解得m=$\frac{16}{3}$.
综上所述m=$\frac{16}{3}$或m=3
故选:D.

点评 本题给出椭圆含有参数m的方程,在已知椭圆离心率的情况下求m的值.着重考查了椭圆的标准方程与简单几何性质等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列函数中在($\frac{π}{4}$,$\frac{3}{4}$π)上为减函数的是(  )
A.y=-tanxB.y=cos(2x-$\frac{π}{2}$)C.y=sin2x+cos2xD.y=2cos2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知2m+n=1(m,n>0),若|3x-a|-f(x)≤$\frac{1}{m}$+$\frac{2}{n}$(a>0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.求经过两条直线2x+3y+1=0和x-3y+4=0的交点,并且垂直于直线3x+4y-7=0的直线的方程为4x-3y+9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线x2=-2y与过点P(0,-1)的直线l交于A,B两点,如果OA与OB的斜率之和为1,则直线l的方程是(  )
A.y=-x-1B.y=x+1C.y=x-1D.y=-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是(  )
A.$\frac{1}{10}$,$\frac{1}{10}$B.$\frac{3}{10}$,$\frac{1}{5}$C.$\frac{1}{5}$,$\frac{3}{10}$D.$\frac{3}{10}$,$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若AB是过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中心的一条弦,M是椭圆上任意一点,且AM、BM与坐标轴不平行,kAM、kBM分别表示直线AM、BM的斜率,则kAM•kBM=-$\frac{{b}^{2}}{{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某几何体的三视图如图所示,则该几何体的表面积为$2+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设F1,F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点,椭圆C上一点$(\sqrt{3},\frac{{\sqrt{2}}}{2})$,过左焦点垂直x轴与椭圆相交所得弦长为2.
(1)求椭圆C的方程;
(2)过点E(1,0)的直线与该椭圆交于P、Q两点,且|EP|=2|EQ|,求此直线的方程;
(3)斜率为1的直线l与椭圆C交于A,B两点,O是原点,当△OAB面积最大时,求直线l的方程;
(4)若P是椭圆C上任意一点,⊙M是以PF2为直径的圆,求证:⊙M总与定圆x2+y2=a2相切.

查看答案和解析>>

同步练习册答案