分析 (1)直线l的方程为y=x-c,则$\frac{c}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,解得c,又$\frac{c}{a}=\frac{\sqrt{3}}{3}$,b2=a2-c2,解得a,b即可得出.
(2)由(1)可得:椭圆C的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1.假设C上存在点P,使得当l绕P转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立.设A(x1,y1),B(x2,y2).
设直线l的方程为my=x-1,与椭圆方程联立化为(2m2+3)y2+4my-4=0,利用根与系数的关系及其$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2),可得点P的坐标(用m表示),代入椭圆的方程即可得出.
解答 解:(1)直线l的方程为y=x-c,则$\frac{c}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,解得c=1,
又$\frac{c}{a}=\frac{\sqrt{3}}{3}$,b2=a2-c2,解得$a=\sqrt{3}$,b2=2.
∴得$a=\sqrt{3}$,b=$\sqrt{2}$.
(2)由(1)可得:椭圆C的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1.
假设C上存在点P,使得当l绕P转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立.设A(x1,y1),B(x2,y2).
设直线l的方程为my=x-1,联立$\left\{\begin{array}{l}{my=x-1}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,
化为(2m2+3)y2+4my-4=0,
∴y1+y2=$\frac{-4m}{2{m}^{2}+3}$.
∴x1+x2=m(y1+y2)+2=$\frac{6}{2{m}^{2}+3}$.
∴$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2)=$(\frac{6}{2{m}^{2}+3},\frac{-4m}{2{m}^{2}+3})$.
代入椭圆方程可得:$\frac{36}{3(2{m}^{2}+3)^{2}}$+$\frac{16{m}^{2}}{2(2{m}^{2}+3)^{2}}$=1,
化为2m2-1=0,
解得m=$±\frac{1}{\sqrt{2}}$.
∴直线l的方程为:y=$±\sqrt{2}$(x-1).
由方程:${y}^{2}±\sqrt{2}y$-1=0,
解得$\left\{\begin{array}{l}{x=\frac{\sqrt{3}+1}{2}}\\{y=\frac{\sqrt{6}-\sqrt{2}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{1-\sqrt{3}}{2}}\\{y=\frac{-\sqrt{6}-\sqrt{2}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{1-\sqrt{3}}{2}}\\{y=\frac{\sqrt{2}+\sqrt{6}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{\sqrt{3}+1}{2}}\\{y=\frac{\sqrt{2}-\sqrt{6}}{2}}\end{array}\right.$.
因此假设正确.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、向量坐标运算,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-1] | B. | (-∞,-$\frac{5}{2}$] | C. | (-∞,-$\frac{9}{2}$] | D. | (-∞,-5] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | b<c<a | B. | a<b<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,1] | B. | [0,2] | C. | [-2,0] | D. | [-2,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com