精英家教网 > 高中数学 > 题目详情
6.某园林局对1 000株树木的生长情况进行调查,其中杉树600株,槐树400株.现用分层抽样方法从这1 000株树木中随机抽取100株,杉树与槐树的树干周长(单位:cm)的抽查结果如表:
树干周长(单位:cm)[30,40)[40,50)[50,60)[60,70)
杉树61921x
槐树420y6
(1)求x,y值; 
(2)树干周长在30cm到40cm之间的4株槐树有1株患虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止,求排查的树木恰好为2株的概率.

分析 (1)因为按分层抽样方法随机抽取100株,可得槐树为40,杉树60株,由此能求出x,y值.
(2)根据已知条件列举法得到基本事件数为12种,而设事件A:排查的树木恰好为2株,事件A包含基本事件个数为3种,可用公式解得所求概率.

解答 解:(1)按分层抽样方法随机抽取100株,可得槐树为40,杉树60株
∴x=60-6-19-21=14,y=40-4-20-6=10.
(2)设4株树为B1、B2、B3、D,设D为有虫害的那株,
基本事件为:(B1,B2)、(B1,B3)、(B1,D)、(B2,B1)、(B2,B3)、(B2,D)、
(B3,B1)、(B3,B2)、(B3,D)、(D,B1)、(D,B2)、(D,B3),共12种,
设事件A:排查的树木恰好为2株,事件A包含(B1,D)、(B2,D)、(B3,D)3种,
∴P(A)=$\frac{3}{12}$=$\frac{1}{4}$.

点评 本题考查分层抽样的应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知直线ax+y+2=0与双曲线x2-$\frac{y^2}{4}$=1的一条渐进线平行,则这两条平行直线之间的距离是(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{{4\sqrt{5}}}{5}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设z=$\frac{10i}{3-i}$,则z的共轭复数为(  )
A.-1+3iB.-1-3iC.1+3iD.1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.复数 $\begin{array}{l}{i^2}(1-2i)\end{array}$的共轭复数是-1-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设θ的终边过点P(-4,3),那么3sinθ+cosθ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,则满足f(x)=$\frac{1}{4}$的x的值是${2}^{\frac{1}{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A={x|y=$\sqrt{1-2x}$+$\frac{2x-1}{\sqrt{x+2}}$},B={y|y=x2-2x-1},则A∩B是(  )
A.[-2,$\frac{1}{2}$]B.(-2,$\frac{1}{2}$]C.[-2,$\frac{1}{2}$)D.(-2,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,右焦点为F(c,0),P(x0,y0)为椭圆上一点,且PA⊥PF.
(1)若a=3,b=$\sqrt{5}$,求x0的值;
(2)若x0=0,求椭圆的离心率;
(3)试判断该椭圆的右准线与以F为圆心,FP为半径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.方程x2-xy-2y2+3y-1=0表示的图形是(  )
A.两个点B.四个点C.两条直线D.四条直线

查看答案和解析>>

同步练习册答案