精英家教网 > 高中数学 > 题目详情
19.已知在平面内点P到两定点${F_1}(-\sqrt{3},0),{F_2}(\sqrt{3},0)$的距离之和为4.
(1)求点P的轨迹方程;
(2)设点P的轨迹为C,若直线l:y=-ex+m(其中e为曲线C的离心率)与曲线C有两个不同的交点A与B且$\overrightarrow{OA}•\overrightarrow{OB}=2$(其中O为坐标原点),求m的值.

分析 (1)通过设点P的轨迹方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,利用2a=24、c=$\sqrt{3}$,计算即得结论;
(2)通过(1)可知$l:y=-\frac{{\sqrt{3}}}{2}x+m$,与椭圆方程联立,利用韦达定理、化简$\overrightarrow{OA}•\overrightarrow{OB}=2$,进而计算可得结论.

解答 解:(1)∵|PF1|+|PF2|=4(|F1F2|<4),
∴点P的轨迹是以F1,F2为焦点,长轴长为4的椭圆.…(2分)
设P(x,y),则轨迹方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,…(3分)
∴$a=2,c=\sqrt{3}$.
又∵b2=a2-c2
∴b=1…(5分)
∴点P的轨迹方程为$\frac{x^2}{4}+{y^2}=1$.…(6分)
(2)设A(x1,y1)、B(x2,y2),
∵$e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,
∴直线$l:y=-\frac{{\sqrt{3}}}{2}x+m$…(7分)
由$\left\{\begin{array}{l}y=-\frac{{\sqrt{3}}}{2}x+m\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$得${x^2}+4{(-\frac{{\sqrt{3}}}{2}x+m)^2}=4$,
整理得${x^2}-\sqrt{3}x+{m^2}-1=0$…(8分)
∴$△={(-\sqrt{3}m)^2}-4({m^2}-1)=4-{m^2}>0$…(9分)
${x_1}+{x_2}=\sqrt{3}m,{x_1}{x_2}={m^2}-1$…(11分)
∴$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}={x_1}{x_2}+(-\frac{{\sqrt{3}}}{2}{x_1}+m)(-\frac{{\sqrt{3}}}{2}{x_2}+m)$
=$\frac{7}{4}{x_1}{x_2}-\frac{{\sqrt{3}}}{2}m({x_1}+{x_2})+{m^2}$
=$\frac{7}{4}({m^2}-1)-\frac{{\sqrt{3}}}{2}m•\sqrt{3}m+{m^2}$
=$\frac{5}{4}{m^2}-\frac{7}{4}$…(12分)
又$\overrightarrow{OA}•\overrightarrow{OB}=2$,
∴$\frac{5}{4}{m^2}-\frac{7}{4}=2$,
∴$m=±\sqrt{3}$.代入①得△>0,满足题意,
∴所求实数m的值为$±\sqrt{3}$.…(14分)

点评 本小题主要考查椭圆的概念、椭圆的方程及直线与椭圆的位置关系等基础知识,考查待定系数法、数形结合的数学思想与方法,以及运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+$\frac{a}{x}$(a>0)
(1)当a=1时,求f(x)的单调区间;
(2)如果P(x0,y0)是曲线y=f(x)上的任意一点,若以P(x0,y0)为切点的切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的最小值;
(3)讨论关于x的方程f(x)=$\frac{{{x^3}+2(bx+a)}}{2x}-\frac{1}{2}$的实根的个数情况.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中的子集个数为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.3位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有8种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,某隧道设计为双向四车道,车道总宽20m,要求通行车辆限高5m,隧道全长2.5km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆.

(1)若最大拱高h为6m,则隧道设计的拱宽l是多少?
(2)若要使隧道上方半椭圆部分的土方工程 量最小,则应如何设计拱高h和拱宽l?(已知:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的面积公式为S=πab,柱体体积为底面积乘以高.)
(3)为了使隧道内部美观,要求在拱线上找两个点M、N,使它们所在位置的高度恰好是限高5m,现以M、N以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的$\sqrt{2}$倍,试确定M、N的位置以及h的值,使总造价最少.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设数列{an}的通项公式为an=3n(n∈N*).数列{bn}定义如下:对任意m∈N*,bm是数列{an}中不大于32m的项的个数,则b3=243;数列{bm}的前m项和Sm=$\frac{3}{8}({9^m}-1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2014年12月28日开始,北京市地铁按照里程分段计价.具体如下表:
乘坐地铁方案
(不含机场线)
6公里(含)内3元;
6公里至12公里(含)内4元;
12公里至22公里(含)内5元;
22公里至32公里(含)内6元;
32公里以上部分,每增加l元可乘坐20公里(含).
已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价大于3元的概率为$\frac{1}{2}$;
(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列有关线性回归分析的四个命题中
①线性回归直线未必过样本数据的中心点$(\overline x,\overline y)$;
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数r>0时,则两个变量正相关;
④如果两个变量的相关性越强,则相关性系数r就越接近于1.
其中真命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(1)0.50.5+0.1-2-3π0
(2)lg$\frac{1}{2}$-lg$\frac{5}{8}$+lg12.5-log89•log278.

查看答案和解析>>

同步练习册答案