精英家教网 > 高中数学 > 题目详情

【题目】已知F1、F2为双曲线的焦点,过F2垂直于实轴的直线交双曲线于A、B两点,BF1交y轴于点C,若AC⊥BF1 , 则双曲线的离心率为(
A.
B.
C.2
D.2

【答案】B
【解析】解:由题意可知:设椭圆的方程为: ,(a>0,b>0), 由AB为双曲线的通径,则A(c, ),B(c,﹣ ),F1(﹣c,0),
由OC为△F1F2B中位线,
则丨OC丨= ,则C(0,﹣ ),
=(﹣c,﹣ ), =(﹣2c, ),
由AC⊥BF1 , 则 =0,
则2c2 =0
整理得:3b4=4a2c2
由b2=c2﹣a2 , 3c4﹣10a2c2+3a4=0,
椭圆的离心率e= ,则3e4﹣10e2+3=0,解得:e2=3或e2=
由e>1,则e=
故选B.
根据中位线定理,求得C点坐标,由 =0,利用向量数量积的坐标运算,利用双曲线的性质,即可求得双曲线的离心率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足 . (Ⅰ)求角C的值;
(Ⅱ)若a=5,△ABC的面积为 ,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( )上单调,则ω的最大值为(
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:x2+3y2=m2(m>0)的左顶点是A,左焦点为F,上顶点为B.
(1)当△AFB的面积为 时,求m的值;
(2)若直线l交椭圆E于M,N两点(不同于A),以线段MN为直径的圆过A点,试探究直线l是否过定点,若存在定点,求出这个定点的坐标,若不存在定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(Ⅰ)求椭圆C的标准方程和长轴长;
(Ⅱ)设F为椭圆C的左焦点,P为直线x=﹣3上任意一点,过点F作直线PF的垂线交椭圆C于M,N,记d1 , d2分别为点M和N到直线OP的距离,证明:d1=d2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,a∈R.
(1)若a≠0,求函数f(x)的单调递增区间;
(2)若a=0,x1<x<x2<2,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=2py(p>0),F为其焦点,过点F的直线l交抛物线于A、B两点,过点B作x轴的垂线,交直线OA于点C,如图所示.
(Ⅰ)求点C的轨迹M的方程;
(Ⅱ)直线m是抛物线的不与x轴重合的切线,切点为P,M与直线m交于点Q,求证:以线段PQ为直径的圆过点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}和{bn}满足:对任意n∈N* , an , bn , an+1成等差数列,bn , an+1 , bn+1成等比数列,且a1=1,b1=2,a2=3.
(Ⅰ)证明数列{ }是等差数列;
(Ⅱ)求数列{ }前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1 (φ为参数,实数a>0),曲线C2 (φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤ )与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α= 时,|OB|=2.
(Ⅰ)求a,b的值;
(Ⅱ)求2|OA|2+|OA||OB|的最大值.

查看答案和解析>>

同步练习册答案