精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆(为参数),存在一条直线,使得此直线被这些椭圆截得的线段长都等于,求直线方程_____.

【答案】

【解析】

先判断出椭圆 (为参数)表示中心在直线上,长轴长和短轴长分别为4,2的一组椭圆,判断出符合条件的直线需要与直线平行,设出直线方程,先利用一个特殊的椭圆与直线方程联立求出直线的方程,再证明对于所有的椭圆都满足条件.

解:椭圆 (为参数)可化为

所以表示中心在直线上,长轴长和短轴长分别为4,2的一组椭圆,而所求的直线与这组椭圆种的任意椭圆都相交,

若所求的直线与直线不平行,则必定存在椭圆与直线不相交,

于是,设所求直线的方程为

因为此直线被这些椭圆截得的线段长都等于,则直线与椭圆所得到弦长为,设弦的两端点为

,所以

所以,即

解得

设直线与椭圆 (为参数),相交所得的弦长为,弦的两端点为:

则由

所以

因此

所以直线与椭圆 (为参数)相交所得的弦长为.

同理可证,对任意,椭圆 (为参数)与直线相交所得弦长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列的前项和记为若对任意的正整数n,总存在正整数m,使得,则称H数列

1)若数列的通项公式,判断是否为H数列

2)等差数列,公差,求证:H数列

3)设点在直线上,其中.若H数列,求满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQQRRP,要求街道PQAB垂直,街道PRAC垂直,直线PQ表示第三条街道。

(1)如果P位于弧BC的中点,求三条街道的总长度;

(2)由于环境的原因,三条街道PQPRQR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(αβ),函数

(1)证明f(x)在区间(α,β)上是增函数;

(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】符合以下性质的函数称为函数:①定义域为,②是奇函数,③(常数),④上单调递增,⑤对任意一个小于的正数,至少存在一个自变量,使.下列四个函数中函数的个数为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的焦点,直线与抛物线相切于点,连接交抛物线于另一点,过点的垂线交抛物线于另一点.

1)若,求直线的方程;

2)求三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①函数的图象关于轴对称的充要条件是

②已知是等差数列的前项和,若,则

③函数与函数的图象关于直线对称;

④对于任意两条异面直线,都存在无穷多个平面与这两条异面直线所成的角相等.

其中正确的命题有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R 且周期为1的函数,在区间上, 其中集合D=,则方程f(x)-lgx=0的解的个数是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案