精英家教网 > 高中数学 > 题目详情

【题目】点S、A、B、C在半径为 的同一球面上,点S到平面ABC的距离为 ,AB=BC=CA= ,则点S与△ABC中心的距离为(
A.
B.
C.1
D.

【答案】B
【解析】解:如图,∵点S、A、B、C在半径为 的同一球面上, 点S到平面ABC的距离为 ,AB=BC=CA=
设△ABC的外接圆的圆心为M,过S作SD⊥平面ABC,交MC于D,
连结OD,OS,过S作MO的垂线SE,交MO于点E,
∴半径r=MC= =1,∴MO= = =1,
∵SD⊥MC,ME⊥MC,∴MESD是矩形,∴ME=SD=
∴MD=SE= = =
∴SM= = =
故选:B.

设△ABC的外接圆的圆心为M,协S作SD⊥平面ABC,交MC于D,连结OD,OS,过S作MO的垂线SE,交MO于点E,由题意求出MC=MO=1,从而得到ME=SD= ,进而求出MD=SE= ,由此能求出点S与△ABC中心的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x)满足f(x)=x2﹣2x﹣3(x>0).
(Ⅰ) 若函数g(x)=|f(x)|﹣a有4个零点,求实数a的取值范围;
(Ⅱ) 求|f(x+1)|≤4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知四棱锥PABCD,底面ABCD为菱形,PA平面ABCDABC=60°,E,F分别是BC,PC的中点.

(1)证明:AEPD;

(2)HPD上的动点,EH与平面PAD所成最大角的正切值为,

求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形.底面 .

(I)证明:

(II)设,求棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四面体ABCD中,△ABC是正三角形,AD=CD.(12分)
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据某水文观测点的历史统计数据,得到某河流水位X(单位:米)的频率分布直方图如图:将河流水位在以上6段的频率作为相应段的概率,并假设每年河流水位互不影响.
(1)求未来三年,至多有1年河流水位X∈[27,31)的概率(结果用分数表示);
(2)该河流对沿河A企业影响如下:当X∈[23,27)时,不会造成影响;当X∈[27,31)时,损失10000元;当X∈[31,35)时,损失60000元,为减少损失,现有种应对方案: 方案一:防御35米的最高水位,需要工程费用3800元;
方案二:防御不超过31米的水位,需要工程费用2000元;
方案三:不采取措施;
试比较哪种方案较好,并请说理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)求函数的最小值和最小正周期;

Ⅱ)已知内角的对边分别为,且,若向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE= ,A1F= ,CE⊥EF.
(Ⅰ)证明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知x>0,y>0,x+y+xy=8,则x+y的最小值?

(2)已知不等式的解集为{x|a≤x<b},点(a,b)在直线mx+ny+1=0上,其中m,n>0,若对任意满足条件的m,n,恒有成立,则λ的取值范围?

查看答案和解析>>

同步练习册答案