精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面为矩形, 为等边三角形,,点中点,平面平面.

(1)求异面直线所成角的余弦值;
(2)求二面角的大小.
(1)异面直线所成角的余弦值为;(2)二面角的大小为.

试题分析:(1)建立如图所示坐标系,写出各点的空间坐标,利用夹角的余弦,得出两异面直线所成角的余弦值. (2)利用平面的法向量与平面的法向量的夹角,求出二面角的大小.
试题解析:

解:取的中点,连接为等边三角形,
,又平面平面 2分
为原点,过点垂直的直线为轴,轴, 为轴建立如图所示的空间直角坐标系.,不妨设,依题意可得:
 3分
(1),
从而 ,
 5分
于是异面直线所成角的余弦值为.6分
(2)因为,所以是平面的法向量,8分
设平面的法向量为,又
 即,令 10分
于是 11分
从而二面角的大小为.                     12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.
 
(1)求证:平面EAC⊥平面PBC
(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABC-A1B1C1中,AB=2,AA1,点DAC的中点,点E在线段AA1上.

(1)当AEEA1=1∶2时,求证DEBC1
(2)是否存在点E,使二面角D-BE-A等于60°,若存在求AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四组向量:
a
=(1,-2,1)
b
=(-1,2,-1)

a
=(8,4,0)
b
=(2,1,0)

a
=(1,0,-1)
b
=(-3,0,3)

a
=(-
4
3
,1,-1)
b
=(4,-3,3)

其中互相平行的是(  )
A.②③B.①④C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知
a
=(2,-1,2),
b
=(-1,3,-3),
c
=(13,6,λ),若向量
a
b
c
共面,则λ=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在直三棱柱ABCA1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2aBB1=3aDA1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.

(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若向量围绕原点按逆时针方向旋转得到向量,则向量的坐标为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量,,则(     )
A.B.C.5D.25

查看答案和解析>>

同步练习册答案