精英家教网 > 高中数学 > 题目详情
13.如图,在平面直角坐标系中,点A(-$\frac{1}{2}$,0),B($\frac{3}{2}$,0),锐角α的终边与单位圆O交于点P.
(Ⅰ)用α的三角函数表示点P的坐标;
(Ⅱ)当$\overrightarrow{AP}$•$\overrightarrow{BP}$=-$\frac{1}{4}$时,求α的值;
(Ⅲ)在x轴上是否存在定点M,使得|$\overrightarrow{AP}$|=$\frac{1}{2}$|$\overrightarrow{MP}$|恒成立?若存在,求出点M的横坐标;若不存在,请说明理由.

分析 (Ⅰ)用α的三角函数的坐标法定义得到P 坐标;
(Ⅱ)首先写成两个向量的坐标根据$\overrightarrow{AP}$•$\overrightarrow{BP}$=-$\frac{1}{4}$,得到关于α的三角函数等式,求α的值;
(Ⅲ)假设存在M(x,0),进行向量的模长运算,得到三角等式,求得成立的x值.

解答 解:锐角α的终边与单位圆O交于点P.
(Ⅰ)用α的三角函数表示点P的坐标为(cosα,sinα);
(Ⅱ)$\overrightarrow{AP}=(cosα+\frac{1}{2},sinα)$,$\overrightarrow{BP}=(cosα-\frac{3}{2},sinα)$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=-$\frac{1}{4}$时,
即(cos$α+\frac{1}{2}$)(cos$α-\frac{3}{2}$)+sin2α=$\frac{-1}{4}$,整理得到cos$α=\frac{1}{2}$,所以锐角α=60°;
(Ⅲ)在x轴上假设存在定点M,设M(x,0),$\overrightarrow{MP}=(cosα-x,sinα)$,
则由|$\overrightarrow{AP}$|=$\frac{1}{2}$|$\overrightarrow{MP}$|恒成立,得到$\frac{5}{4}+cosα$=$\frac{1}{4}(1-2xcosα+{x}^{2})$,整理得2cosα(2+x)=x2-4,
所以存在x=-2时等式恒成立,所以存在M(-2,0).

点评 本题考查了三角函数的坐标法定义的运用以及平面向量的运算;关键是正确利用坐标表示各向量,并正确化简运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.证券公司提示:股市有风险,入市需谨慎.小强买的股票A连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sin($\frac{π}{2}$+α)=-$\frac{3}{5}$,且α∈(-π,0),则tanα=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.±$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(3,t),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数t的值为(  )
A.-9B.-1C.1D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知角α终边上有一点P(x,1),且cosα=-$\frac{1}{2}$,则tanα=-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x>0,y>0且2x+y=3,则$\frac{1}{x}+\frac{1}{y}$的最小值是$\frac{1}{3}(3+2\sqrt{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(α)=$\frac{sin(\frac{3π}{2}+α)cos(2π-a)tan(π+α)}{cos(-\frac{π}{2}-α)}$,则f(-$\frac{31π}{3}$)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.i为虚数单位,则${(\frac{1+i}{1-i})^{2007}}$=(  )
A.-iB.-1C.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若指数函数f(x)=(3m-1)x在R上是减函数,则实数m的取值范围是(  )
A.m>0且m≠1B.m≠$\frac{1}{3}$C.m>$\frac{1}{3}$且m≠$\frac{2}{3}$D.$\frac{1}{3}$<m<$\frac{2}{3}$

查看答案和解析>>

同步练习册答案