精英家教网 > 高中数学 > 题目详情
我们用部分自然数构造如下的数表:用aij(i≥j)表示第i行第j个数(i、j为正整数),使ail=aii="i" ;每行中的其余各数分别等于其“肩膀”上的两个数之和(第一、二行除外,如图),设第n(n为正整数)行中各数之和为bn
(1)试写出b2一2b1;,b3-2b2,b4-2b3,b5-2b4,并推测bn+1和bn的关系(无需证明);
(2)证明数列{bn+2}是等比数列,并求数列{bn}的通项公式bn
(3)数列{ bn}中是否存在不同的三项bp,bq,br(p,q,r为正整数)恰好成等差数列?若存在求出P,q,r的关系;若不存在,请说明理由.
 
(1)bn+1-2 bn=2(2)bn =3×2n-1-2(3)不存在
(1)bl=1,;b2=4;b3=10;b4=22;b5=46:
可见:b2-2 bl=2;b3-2 b2=2;b4-2 b3=2;b5-2 b4=2
猜测:bn+1-2 bn="2" (或bn+1="2" bn+2或bn+1- bn=3×2n-1)
(2)由(1)
所以{bn+2},是以b1+2=3为首项,2为公比的等比数列,
∴ bn+2=3×2n-1  ,即bn =3×2n-1-2。。-
(注:若考虑,且不讨论n=1,扣1分)
(3)若数列{ bn }中存在不同的三项bp, bq, br(p,q,r∈N)恰好成等差数列,不妨设p>q>r,显然,{ bn }是递增数列,则2 bq= bp, + br
即2×(3×2q-1-2)=(3×2p-1-2)+(3×2r-1-2),于是2×2q-r=2q-r+1
由p,q,r∈N且p>q>r知,q-r≥1,p-r≥2
∴等式的左边为偶数,右边为奇数,不成立,故数列{bn}中不存在不同的三项bpbqbr(p,q,r∈N)恰好成等差数列--
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知等差数列的公差,对任意,都有
(I)求证:对任意,所有方程均有一个相同的实数根;
(II)若,方程的另一不同根为,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列满足.
(1)求数列的通项公式;
(2)当时,证明不等式:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)在数列{an}中,a1=2,an+1="4" an-3n+1,n∈N*.
(1)证明数列{an-n}是等比数列;(2)求数列{an}的前n项和Sn;(3)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司决定给员工增加工资,提出了两个方案,让每位员工自由选择其中一种.甲方案是:公司在每年年末给每位员工增资1000元;乙方案是每半年末给每位员工增资300元.某员工分别依两种方案计算增资总额后得到下表:
工作年限
方案甲
方案乙
最终选择
1
1000
600
方案甲
2
2000
1200
方案乙
≥3
 
 
方案甲
(说明:①方案的选择应以让自己获得更多增资为准. ②假定员工工作年限均为整数.)
(1)他这样计算增资总额,结果对吗?如果让你选择,你会怎样选择增资方案?说明你的理由;
(2)若保持方案甲不变,而方案乙中每半年末的增资数改为a元,问:a为何值时,方案乙总比方案甲多增资?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列和正项等比数列,a7是b3和b7的等比中项.
(1)求数列的通项公式;
(2)若,求数列{}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知{an}是一个等差数列,且a2=1,a5=-5.(Ⅰ)求{an}的通项;(Ⅱ)求{an}前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设正项数列的前项和为 ,且.
(1)求数列的通项公式;                                    
(2)是否存在等比数列,使对一切正整数都成立?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)设数列的前项和为,且;数列为等差数列,且.(1)求数列的通项公式;
(2)若为数列的前项和.求证:

查看答案和解析>>

同步练习册答案