精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex﹣mx,
(1)求函数f(x)的单调区间.
(2)若函数g(x)=f(x)﹣lnx+x2存在两个零点,求m的取值范围.

【答案】
(1)解:f′(x)=ex﹣m,

若m≤0,则f′(x)>0恒成立,

f(x)在R递增,无递减区间;

m>0时,由f′(x)=0,得:x=lnm,

令f′(x)>0,解得:x>lnm,

令f′(x)<0,解得:x<lnm,

故f(x)在(﹣∞,lnm)递减,在(lnm,+∞)递增


(2)解:由g(x)=f(x)﹣lnx+x2=0,

得m=

令h(x)=

则h′(x)=

观察得x=1时,h′(x)=0.

当x>1时,h′(x)>0,

当0<x<1时,h′(x)<0,

∴h(x)min=h(1)=e+1,

∴函数g(x)=f(x)﹣lnx+x2存在两个零点时,m的取值范围是(e+1,+∞)


【解析】(1)求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;(2)由g(x)=f(x)﹣lnx+x2=0,分离出m,令h(x)= ,由此能求出函数g(x)=f(x)﹣lnx+x2存在两个零点时m的取值范围.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣
(1)讨论f(x)的单调性.
(2)若f(x)在区间(1,2)上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x﹣ )的图象,可以将函数y=sin2x的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2,
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:

喜欢《最强大脑》

不喜欢《最强大脑》

合计

男生

15

女生

15

合计

已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4

( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;

( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.

下面的临界值表仅参考:

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2=,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)是定义在(﹣2,2)上的减函数,则不等式f( )+f(2x﹣1)>0的解集是(
A.(﹣∞,
B.[﹣ ,+∞)
C.(﹣6,﹣
D.(﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中 )的图象与x轴的交点中,相邻两个交点之间的距离为 ,且图象上一个最低点为 . (Ⅰ)求f(x)的解析式;
(Ⅱ)当 ,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线l1:kx+y=0和直线l2:kx+y+b=0(b>0),射线OC的一个法向量为 =(﹣k,1),点O为坐标原点,且k≥0,直线l1和l2之间的距离为2,点A、B分别是直线l1、l2上的动点,P(4,2),PM⊥l1于点M,PN⊥OC于点N;

(1)若k=1,求|OM|+|ON|的值;
(2)若| |=8,求 的最大值;
(3)若k=0,AB⊥l2 , 且Q(﹣4,﹣4),试求|PA|+|AB|+|BQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理中是演绎推理的序号为(
A.由金、银、铜、铁可导电,猜想:金属都可导电
B.猜想数列 {an}的通项公式为 (n∈N+
C.半径为r圆的面积S=πr2 , 则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x﹣a)2+(y﹣b)2=r2 , 推测空间直角坐标系中球的方程为(x﹣a)2+(y﹣b)2+(z﹣c)2=r2

查看答案和解析>>

同步练习册答案