精英家教网 > 高中数学 > 题目详情
在△ABC中,已知asinA+csinC-
2
asinC=bsinB

(1)求B;
(2)若C=60°,b=2,求c与a.
分析:(1)由已知条件利用正弦定理得b2=a2+c2-
2
ac,再由余弦定理得b2=a2+c2-2ac•cosB,由此解得cosB的值,即可得到B的值.
(2)由
c
sinC
=
b
sinB
,解得c=
6
,由余弦定理得:c2=a2+b2-2ab•cosC,即a2-2a-2=0,解方程求得a的值
解答:解:(1)由已知 asinA+csinC-
2
asinC=bsinB
,利用正弦定理得b2=a2+c2-
2
ac,…(3分)
再由余弦定理得b2=a2+c2-2ac•cosB,故cosB=
2
2
,∴B=45°.…(6分)
(2)由
c
sinC
=
b
sinB
,解得c=
6
. …(10分)
由余弦定理得:c2=a2+b2-2ab•cosC,
即a2-2a-2=0,∴a=
3
+1.…(14分)
点评:本题主要考查正弦定理和余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知A、B、C成等差数列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=45°,a=2,b=
2
,则B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=60°,
AB
AC
=1,则△ABC的面积为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的长;
(2)求sinA的值.

查看答案和解析>>

同步练习册答案