【题目】已知中心在原点,焦点在轴上的椭圆的离心率为,过左焦点且垂直于轴的直线交椭圆于两点,且.
(Ⅰ)求的方程;
(Ⅱ)若圆上一点处的切线交椭圆于两不同点,求弦长的最大值.
【答案】(1);(2).
【解析】
(Ⅰ)根据通径和离心率及椭圆中的关系,可求得椭圆的标准方程。
(Ⅱ)讨论当斜率是否存在。当斜率不存在时,易得切线方程和切点坐标,进而得到的值。当斜率存在时,设出直线方程,根据直线与圆相切,得到;联立直线与椭圆方程,利用韦达定理和弦长公式表示出,再用换元法及函数单调性判断的最值。
(Ⅰ)由已知,设椭圆的方程为,
因为,不妨设点,代入椭圆方程得,,
又因为, 所以,,所以,,
所以的方程为.
(Ⅱ)依题意,圆上的切点不能为,
①当直线的斜率不存在时,其方程为,此时两点的坐标为,所以.
②当直线的斜率存在时,设直线的方程为,由直线与圆相切,得,
即,设,
联立得,,,
所以
所以,令,则,,
,越大,越大,所以,即.
综合①②知,弦长的最大值为.
科目:高中数学 来源: 题型:
【题目】某企业生产一种产品,根据经验,其次品率与日产量 (万件)之间满足关系, (其中为常数,且,已知每生产1万件合格的产品以盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如表示每生产10件产品,有1件次品,其余为合格品).
(1)试将生产这种产品每天的盈利额 (万元)表示为日产量 (万件)的函数;
(2)当日产量为多少时,可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 ,过点的直线的参数方程为(为参数),与交于两点
(1) 求的直角坐标方程和的普通方程;
(2) 若,,成等比数列,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosx(sinx﹣cosx).
(1)求函数f(x)的最小正周期及单调递减区间:
(2)将f(x)的图象向左平移个单位后得到函数g(x)的图象,若方程g(x)=m在区间[0,]上有解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的顶点为坐标原点,焦点在轴的正半轴上,点是抛物线上的一点,以为圆心,2为半径的圆与轴相切,切点为.
(I)求抛物线的标准方程:
(Ⅱ)设直线在轴上的截距为6,且与抛物线交于,两点,连接并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com