精英家教网 > 高中数学 > 题目详情

【题目】已知中心在原点,焦点在轴上的椭圆的离心率为,过左焦点且垂直于轴的直线交椭圆两点,且.

(Ⅰ)的方程;

(Ⅱ)若圆上一点处的切线交椭圆于两不同点,求弦长的最大值.

【答案】(1);(2).

【解析】

根据通径和离心率及椭圆中的关系,可求得椭圆的标准方程。

讨论当斜率是否存在。当斜率不存在时,易得切线方程和切点坐标,进而得到的值当斜率存在时,设出直线方程,根据直线与圆相切,得到;联立直线与椭圆方程,利用韦达定理和弦长公式表示出再用换元法及函数单调性判断的最值。

Ⅰ)由已知,设椭圆的方程为

因为,不妨设点,代入椭圆方程得,

又因为所以,所以

所以的方程为.

Ⅱ)依题意,圆上的切点不能为

①当直线的斜率不存在时,其方程为,此时两点的坐标为,所以.

②当直线的斜率存在时,设直线的方程为,由直线与圆相切,得

,设

联立得,

所以

所以,令,则

越大,越大,所以,即.

综合①②知,弦长的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下不等式中错误的是(  )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知为异面直线,平面平面.直线满足,则( )

A. ,且 B. ,且

C. 相交,且交线垂直于 D. 相交,且交线平行于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种产品,根据经验,其次品率与日产量 (万件)之间满足关系, (其中为常数,且,已知每生产1万件合格的产品以盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如表示每生产10件产品,有1件次品,其余为合格品).

1)试将生产这种产品每天的盈利额 (万元)表示为日产量 (万件)的函数;

2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 ,过点的直线的参数方程为为参数),交于两点

(1) 求的直角坐标方程和的普通方程;

(2) 若,,成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若函数在区间上均单调且单调性相反,求的取值范围;

(Ⅱ)若,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2cosxsinxcosx.

1)求函数fx)的最小正周期及单调递减区间:

2)将fx)的图象向左平移个单位后得到函数gx)的图象,若方程gx)=m在区间[0]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的顶点为坐标原点,焦点轴的正半轴上,点是抛物线上的一点,以为圆心,2为半径的圆与轴相切,切点为.

(I)求抛物线的标准方程:

(Ⅱ)设直线轴上的截距为6,且与抛物线交于,两点,连接并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案